Math 22

Homework 7
Write careful solutions for the homework that demonstrates a command of what you have learned on week $\# 7$. Do not carry out computations without telling the reader why you are doing the computation. If you say something is true provide a short explanation using definitions or Theorems. Hand-in something that you can feel proud of.

1. Show that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}=\left\{\left[\begin{array}{r}3 \\ -3 \\ 0\end{array}\right],\left[\begin{array}{r}2 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right]\right\}$ is an orthogonal basis for \mathbb{R}^{3} and write $\mathbf{x}=\left[\begin{array}{r}5 \\ -3 \\ 1\end{array}\right]$ as a linear combination of the \mathbf{u}_{i}.
2. Let $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ where $\mathbf{u}_{1}=\left[\begin{array}{r}1 \\ 1 \\ 0 \\ -1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right]$, and $\mathbf{u}_{3}=\left[\begin{array}{r}0 \\ -1 \\ 1 \\ -1\end{array}\right]$. Write $\mathbf{y}=\left[\begin{array}{l}3 \\ 4 \\ 5 \\ 6\end{array}\right]$ as the sum of a vector in W and a vector in W^{\perp}.
3. Let $\mathbf{y}=\left[\begin{array}{l}7 \\ 9\end{array}\right], \mathbf{u}_{1}=\left[\begin{array}{r}1 / \sqrt{10} \\ -3 / \sqrt{10}\end{array}\right]$, and $W=\operatorname{Span}\left\{\mathbf{u}_{1}\right\}$.

Let $U=\left[\begin{array}{c}1 / \sqrt{10} \\ -3 / \sqrt{10}\end{array}\right]=\left[\mathbf{u}_{1}\right]$ viewed as a 2×1 matrix.
(a) Compute $U^{T} U$ and $U U^{T}$.
(b) Compute $\operatorname{proj}_{W} \mathbf{y}$ using the definition and $\left(U U^{T}\right) \mathbf{y}$
4. Find the best approximation to $\mathbf{z}=\left[\begin{array}{r}2 \\ 4 \\ 0 \\ -1\end{array}\right]$ by vectors of the form $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}$ where $\mathbf{v}_{1}=\left[\begin{array}{r}2 \\ 0 \\ -1 \\ -3\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{r}5 \\ -2 \\ 4 \\ 2\end{array}\right]$.
5. Find the equation $y=c t+d$ of the least squares line that best fits the following data points: $(1,0),(2,1),(4,2),(5,3)$

