ADDITIONAL HOMEWORK PROBLEMS

MATH 22

(1) Define $T: M_{2 \times 2} \rightarrow P_{2}$ by

$$
\begin{gathered}
T\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=(a+b)+2 d t+b t^{2} \\
\text { Let } \beta=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\} \text { and } \mathcal{C}=\left\{1, t, t^{2}\right\} .
\end{gathered}
$$

Compute $[T]_{\beta}^{\mathcal{C}}$.
(2) (a) Similar as we did in class for the derivative, compute the matrix corresponding to the integral linear transformation $T: P_{2} \rightarrow P_{3}$. That is $T(p(t))=\int_{0}^{t} p(x) d x$.
(b) Using the matrix that you computed in (a) find the integral of $p(t)=2+t-3 t^{2}$.

