PROOF PROBLEMS

MATH 22

(1) Prove that if λ is an eigenvalue of $A B$ then λ is an eigenvalue of $B A$.
(2) Suppose that $T: V \rightarrow W$ is an isomorphism of V onto W.
(a) Show that H is a subspace of V if and only if $T(H):=\{T(\mathbf{v}) \in$ $W \mid \mathbf{v} \in H\}$ is a subspace of W.
(b) Let H be a subspace of V. Show that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is a basis for H if and only if $\left\{T\left(\mathbf{v}_{1}, T\left(\mathbf{v}_{2}\right), \ldots, T\left(\mathbf{v}_{p}\right\}\right.\right.$ is a basis for $T(H)$.
(3) Let A_{n} be the $n \times n$ matrix that has zeros on its main diagonal and all other entries equal to -1 . Find the determinant of A_{n}. [HINT: Add all rows (except the last) to the last row, then factor our a constant. Try $n=3$.]
(4) Suppose that u is a unit vector in \mathbb{R}^{n}, so that $u^{T} u=1$. Let $H=$ $I-2 u u^{T}$. H is an $n \times n$ symmetric matrix.
(a) Show that $H^{2}=I$. What can you say about H in this case?
(b) One eigenvector of H is u. Find the corresponding eigenvalue.
(c) If v is perpendicular to u, show that v is an eigenvector of H and find its eigenvalue.
(5) Let A be an $n \times n$ matrix with eigenvalue λ and corresponding eigenvector \mathbf{v}. Use mathematical induction to show that λ^{n} is an eigenvalue of A^{n} with corresponding eigenvector \mathbf{v} for all integers $n \geq 1$.

Date: August 15, 2012.

