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On Writing Proofs

1 Introduction

What constitutes a well-written proof? A simple but rather vague answer is that a well-written proof is
both clear and concise. The reader should be able to understand each step made by the author without
struggling. You may assume that the audience is familiar with the relevant definitions and theorems,
but has given little to no thought about the problem at hand. Lead the reader through the problem step
by step. Make sure each statement follows logically from the previous statement and brings us one step
closer to the goal. Once your solution is complete, the reader should have no problem reconstructing the
original statement of the problem.

The following analogy may clarify what constitutes a well-written proof and how to go about writing
one. Imagine that you are going to lead a group of adventurers through the jungle to the top of a
mountain to view the most spectacular sunset. You can assume that your group is capable of such a
trip, however none of them are familiar with the region. In order to complete this journey successfully,
you must first find an appropriate route and then be able to explain to your group how to navigate every
twist and turn along the way.

Before taking your group out into the jungle, your first priority should be to find at least one way to
get to the mountaintop from base camp. That way you insure everyone will get to see the spectacular
view. However, having found a route, you may want to reconsider whether you have chosen the best one.
Is it appropriate for those traveling in your group? Did you have to backtrack at any point? Were there
any shortcuts you missed? Were there any difficult climbs that can be avoided? If they can’t be avoided,
are you prepared to explain to everyone how to successfully navigate this portion of the journey? Once
on top of the mountain, perhaps a completely different path can be seen from above that you never saw
while in the jungle. You may want to investigate this new path before setting out with your group.

Once you have answered all these questions, you are ready to take your group along the most direct
and enlightening route you have found. Before beginning, make sure to tell your group what lies ahead
and the mode of transport you will be using (hiking, cycling, kayaking, etc.). Along the way, feel free
to point out any interesting views or introduce them to an amazing creature that you have encountered,
but make sure that it is relevant to the task at hand. Each step through the jungle should follow easily
from the previous one. Don’t make your steps too big or walk too quickly, otherwise you run the risk
of losing some of your group to the jungle. And once you have completed your trek, make sure to point
out what everyone has come to see. You wouldn’t want anyone to miss out!

It should be clear from our analogy that finding a solution and writing up a solution are two completely
different things. In the next two sections, we will further break down each task to give you a better idea of
how to complete them. The final section reviews various methods of proof and provides several examples
of using these methods.

2 Finding A Solution

As suggested by our analogy, the first step should be to find a solution. While there is no sure fired way
to do so, the following steps will help you get started and provide you with some suggestion in case you
get stuck.

1. Read the problem - Read it carefully!



2. Determine what the problem is asking you to do. Outline exactly what you have to do to
answer this problem. Is it asking you for a formula? Do you have to prove that your formula is
correct. Are there multiple parts?

3. What information has been given? It may help to write down all the definitions and their
immediate implications. For example, if you are told that a and b are relatively prime, this means
that a and b have no prime factors in common. It also means that the largest number that divides
both a and b is 1, in other words, gcd(a, b) = 1. And lastly, it means that there exists integers r
and s such that ar + bs = 1. In the end, you may not use all of these pieces of information, but it
helps to remind yourself of what tools are at your disposal.

4. What assumptions are you making, if any? Are you introducing any new information that
was not given in the problem? Is it possible to answer the question without introducing this
new information? Are these additional assumptions valid. If you are introducing some valid
assumptions, make sure to include this information in your solution.

5. Try specific values. If the problem is asking you to find a function, then before even attempting
to guess the correct answer, try to determine what this function should evaluate to for specific
and/or convenient values of the input variables. This will not only help get you started trying
to figure out what the general formula is, but it may also give you a hint on how to prove that
your formula is correct. Furthermore, this gives you a way to check that your answer is correct in
specific cases.

If the problem is asking you to prove an identity for all n ≥ 0 and you are struggling to find
a general argument, consider what the identity says for small values of n. Can you prove these
specific cases? This may help you find a pattern which leads to a general argument.

6. Formulate a possible solution. The emphasis here should be on the word possible. Suppose that
you are trying to find the number of permutations of {1, 2, 3, 4, 5} that satisfy a certain condition.
You know that there are 5! = 120 total permutations to begin with, so your answer had better be
no more than 120. Can you give a lower bound for the correct answer? Can you approximate what
the correct answer should be? Does your proposed solution come close to this approximation?

7. Determine a plan of attack. Depending on the type of statement that you are trying to prove,
you may try one of the following techniques: example/counterexample, direct proof, proof by
contrapositive, proof by contradiction, proof by cases or proof by induction. See the section on
“Methods of Proof” for specific examples regarding each of them methods.

8. Implement. Start writing up your proof based on the method you selected. Can you see how to
complete the proof? Start combining the pieces of information to gather new information. Don’t
give up too easily. These things take time. If you can’t see how to complete the proof, you might
try working backwards. You know what the last line of your prove should be. What are some
possible next-to-last lines? Can you see how to get to this next-to-last line?

If all else fails, you may need to consider a different method of proof. And if no other method is
working for you, you may have to reconsider your solution and select a new plan of attack.

9. Can you simplify your proof/solution? Make sure that you haven’t repeated yourself anywhere
and/or included any irrelevant information. Does your final answer simplify at all? If so, perhaps
the simplified version suggests an easier way to solve the problem.

10. Have you answered the question? Double check to make sure that you have answered all parts
of the problem. Does your final answer agree with the data you previously collected? Can you
think of another way to do the problem? If you can, you should get the same answer. Do you?



3 Writing a Proof

The following is a list of things to keep in mind when writing your proof.

1. Clearly state what you are going to prove and what method of proof you will to use.
It makes it much easier for the reader to follow along if they have some sense of the direction in
which they are headed.

2. Make sure each statement follows logically from the previous. If you expect the reader
to follow along, each statement should be an immediate consequence of the previous statement.
Ultimately, by the time someone has finished reading your solution, they should know what the
statement of the problem was.

3. Say precisely what you mean and mean precisely what you say. Be very careful in how
you phrase each sentence. Use proper terminology. Many times there is a strong urge to paraphrase
the statement of a definition or theorem. In the beginning, try to resist that urge until you truly
understand it. Definitions and theorems are worded very precisely and hence changing one word
could easily change its meaning and/or validity.

4. Use complete sentences and correct grammar. Writing a mathematical paper is no different
from writing any other type of document. You should treat mathematical statements or symbols as
if they were written in English. Make sure that when read, your statements involving mathematical
formulas and symbols are in fact sentences.

5. Define your notation. If you introduce any new notation, you must define it. Even if you think
it’s clear from the context what your notation means, you cannot assume that it will be clear to
the reader. Do not define new notation that conflicts with notation already established in class or
in the text.

6. Use examples appropriately. During your proof, you may decide to introduce some new nota-
tion, make a definition, or describe an algorithm. If you are finding it difficult to describe precisely
what you mean, an example can be a valuable tool to get your point across. However, never use
an example as a substitute for a formal definition or proof.

7. Never assume what you are trying to prove. In your proof, restrict yourself to writing
statements that you know to be true. These can be statements that are valid assumptions from
the problem and/or the method of proof or statements that you have previously explained.

For example: if you want to show that (n + 1)2 − 1 = n(n + 2), do not use the following technique:

(n + 1)2 − 1 ?= n(n + 2)

(n2 + 2n + 1)− 1 ?= n2 + 2n

n2 + 2n
?= n2 + 2n

but instead

(n + 1)2 − 1 = (n2 + 2n + 1)− 1
= n2 + 2n

= n(n + 2)

In other words, start with one side of the equality, and show how to transform it into the other
side. Not only does this look nicer, but each line corresponds to one algebraic manipulation, and
thus makes it easier for the reader to follow or for you to further explain each step.



8. The best way to prove something may not be the way you discovered it. Your proof
need not be a retelling of the way you happened upon the answer. While it’s good to motivate
each step and show the reader how they could have discovered the answer themselves, often times
this can lead to a longer and more complicated proof than warranted.

9. Conclude your proof with the vary statement you were trying to prove. Do not leave
the reader hanging. Let the reader know that you have arrived at the statement you were trying
to prove and that you are now ready to move on to the next challenge.

4 Methods of Proof

4.1 Example/Counterexample

Many statements involving universal and/or existential quantifiers such as “for all” or “there exists” can
be proved or disproved in a very straight forward manner. For example, the statement

there exists an x such that p(x) is true

can be proved by giving a single value of x such that p(x) is true.

Example: There exists integers x and y such that 23x + 15y = 1

Proof: Let x = 2 and y = −3. Clearly 23 · 2 + 15 · −3 = 46− 45 = 1.
2

Notice that x = −13 and y = 20 also work, however all we had to do was present one such solution.
In fact, there are infinitely many solutions. Can you describe them all?

Similarly, a statement of the form for all x, p(x) is true can be disproved by giving one specific
counterexample. In other words, the negation of the previous statement is there exists an x such that
p(x) is not true.

Example: For all integers x, a and b, if x divides ab then x divides a or x divides b.

Counterexample: Let x = 6, a = 2 and b = 3. Notice that 6 divides 2× 3 however it does not divide
2 nor does it divide 3.

2

4.2 Direct Proof

A direct proof is used to prove any statement of the form

for all x ∈ X if p(x) is true then q(x) is true.

A direct proof is generally considered the most desirable and therefore when attempting to prove a
statement of this form, a direct proof should be your first option. The usual form of a direct proof is to
let x be an arbitrary element of X, assume that p(x) is true and through a series of logical deductions,
conclude that q(x) must also be true.

Example: Let x and y be integers. Show that if x + y is even then x− y is even.

Proof: Let x and y be arbitrary integers and assume that x + y is even. That is, there exists an integer
n such that

x + y = 2n.

Therefore
x− y = x + y − 2y = 2n− 2y = 2(n− y).



In other words, x− y is even. 2

Note that a statement of the form p if and only if q should be treated as if p then q and if q then p,
which is known as the converse of if p then q.

4.3 Contrapositive

The contrapositive can also be used to prove statements of the form

for all x ∈ X if p(x) is true then q(x) is true.

In this case however, one assumes that q(x) is false and through a series of logical deductions, concludes
that p(x) must also be false. In other words, we are proving the statement if q(x) is false then p(x) is
false using a direct proof. This is valid since if p then q is logically equivalent to if not q then not p.

Example: Let x,y and z be positive integers. If x2 + y2 = z2 then at least one of x, y or z is even.

Proof: Let x, y and z be arbitrary odd integers. Then x2, y2 and z2 are all odd as well. However x2 +y2

must be even since it is the sum of two odd integers. Therefore x2 + y2 6= z2.
2

4.4 Contradiction

A proof by contradiction is generally used when all other methods of proof have failed. It can be used to
prove any statement, call it p. The idea is to assume that p is false and through a series of deductions,
conclude something which is obviously false (this being the contradiction). Since p must be either true
or false, and assuming p to be false leads to a contradiction, we must conclude that p is true.

Example:
√

2 is irrational.

Proof by contradiction: Assume that
√

2 is rational. Therefore there exists integers a and b such that

√
2 =

a

b

where a and b do not have any factors in common. (If they do have a factor in common, say d, then
a = a′d and b = b′d and a/b = a′/b′. In other words, we could use a′ and b′ instead of a and b.) Squaring
both sides reveals that

2 =
a2

b2

or a2 = 2b2. Now consider the number of factors of 2 in a2. If a is even, then a2 must be a multiple of
4. But since a and b do not have any factors in common, b must be odd and thus 2b2 is not a multiple
of 4. Therefore a2 6= 2b2, which contradicts our statement above. On the other hand, if a is odd, then
a2 is odd and is not a multiple of 2, but clearly 2b2 is a multiple of 2. Again, this implies that a2 6= 2b2,
which is a contradiction. Therefore, no such integers a and b exist, and thus

√
2 is irrational. 2

Note that the negation of a statement of the form if p then q is

p and not q.

For example, the negation of the statement “If I have enough money then I will buy an ice cream cone”
is “I have enough money and I’m not going to buy an ice cream cone.”



4.5 Cases

It many instances, proving a statement in one fell swoop can be a bit much. Sometimes it can be
worthwhile to break up your proof into several cases, where further assumptions may help prove the
individual cases. Additionally, different methods of proof can be used in each case. Notice that in the
proof that

√
2 is irrational, we considered the cases where a was even and where a was odd.

Example: For all integers n, 3n4 + 2n3 + n is divisible by 6.

Proof by cases: First we point out that

3n4 + 2n3 + n = n(n + 1)(3n2 − n + 1).

This done, we will consider the following cases depending on which number between n and n + 5 is
divisible by 6. Note that for any n, exactly one of these numbers must be divisible by 6.

Case 1 - n or n + 1 is divisible by 6: If n or n + 1 is divisible by 6 then clearly 3n4 + 2n3 + n is
divisible by 6 since n and n + 1 divide 3n4 + 2n3 + n.

Case 2 - n + 2 is divisible by 6: If n + 2 is divisible by 6, then n + 2 = 6m for some integer m. Thus
n = 6m− 2 is divisible by 2 and

3n2 − n + 1 = 3(6m− 2)2 − 6m + 3 = 3((6m− 2)2 − 2m + 1)

is divisible by 3. Therefore 3n4 + 2n3 + n is divisble by both 2 and 3, and thus divisible by 6.

Case 3 - n + 3 is divisible by 6: If n + 3 is divisible by 6, then n + 3 = 6m for some integer m. Thus
n = 6m− 3 is divisible by 3 and n + 1 = 6m− 2 is divisible by 2. Therefore 3n4 + 2n3 + n is divisble by
both 2 and 3, and thus divisible by 6.

Case 4 - n + 4 is divisible by 6: If n + 4 is divisible by 6, then n + 4 = 6m for some integer m. Thus
n = 6m− 4 is divisible by 2 and n + 1 = 6m− 3 is divisible by 3. Therefore 3n4 + 2n3 + n is divisble by
both 2 and 3, and thus divisible by 6.

Case 5 - n + 5 is divisible by 6: If n + 5 is divisible by 6, then n + 5 = 6m for some integer m. Thus
n + 1 = 6m− 4 is divisible by 2 and

3n2 − n + 1 = 3(6m− 5)2 − 6m + 6 = 3((6m− 5)2 − 2m + 2)

is divisible by 3. Therefore 3n4 + 2n3 + n is divisble by both 2 and 3, and thus divisible by 6.
Notice that in each case, 3n4 + 2n3 + n is divisible by 6, as claimed.

2

4.6 Mathematical Induction

Mathematical induction is used to prove statements of the form

for all n ≥ a, p(n).

A proof by induction consists of two steps. First, the Base Step shows that p(a) is true. Second, the
Inductive Step is where we will prove the statement if p(n) is true then p(n+1) is true. We will typically
use a direct proof to prove this statement. The assumption that p(n) is true is called the inductive
hypothesis.

Example: For all n ≥ 1, 3n4 + 2n3 + n is divisible by 6.



Proof: We will proceed by induction on n.
Base Step: n = 1

3 + 2 + 1 = 6

which is clearly divisible by 6.
Inductive Step: Assume that 3n4+2n3+n is divisible by 6. We will show that 3(n+1)4+2(n+1)3+(n+1)
is also divisible by 6.

3(n + 1)4 + 2(n + 1)3 + (n + 1) = 3n4 + 14n3 + 24n2 + 19n + 6
= (3n4 + 2n3 + n) + (12n3 + 24n2 + 18n + 6)
= (3n4 + 2n3 + n) + 6(2n3 + 4n2 + 3n + 1)

Notice that each term is clearly divisible by 6. The first term is divisible by 6 by the inductive
hypothesis and the second term is divisible by 6 since it is written as 6×m for some integer m. Therefore
3(n + 1)4 + 2(n + 1)3 + (n + 1) is divisible by 6 since it is the sum of two numbers that are each divisible
by 6.

2

It is crucial that at some point in the inductive step you use the inductive hypothesis. If you find that
you didn’t use the inductive hypothesis, then either your proof is incorrect or a proof by induction was
not appropriate.


