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Just for today

I §4.3 Bases of a vector space
I Midterm1 tonight 6pm - 8pm in Kemeny 008



§4.3 Definition of basis

Definition
Let B = {v1, . . . , vp} be a set of vectors in a vector space V .
B is a basis of V if:

I Span{v1, . . . , vp} = V
I B is a linearly independent set

A concise way to think about a basis is as a minimal spanning set.
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§4.3 Theorem 5

Suppose we have a spanning set and we want to get a basis.
We can obtain a basis by eliminating redundant vectors...

Theorem
Let S = {v1, . . . , vp} be a set of vectors in a vector space V .
Let H = Span{v1, . . . , vp}. Then:

1. If one of the vectors (call it vk) of S is a linear combination of
the rest, then the span of the vectors in S without including
vk still spans H. (i.e. we can throw out vk and it doesn’t
change the span).

2. If H 6= {0}, then some subset of S is a basis for H.

What’s the proof?
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§4.3 Example

Consider the matrix

A =


1 0 3 0 11 0 0
0 1 2 0 7 0 0
0 0 0 1 5 0 0
0 0 0 0 0 1 13
0 0 0 0 0 0 0

 .

What is a basis for Nul A? The parametric vector form describing
Nul A always produces a basis.

What is a basis for ColA? Eliminate columns that are linear
combinations of the others.

What changes if A is not in RREF?
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Now consider the matrix B whose RREF is A.
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 .

What is a basis for Nul B? Row operations don’t affect Nul A.

What is a basis for ColB? Row operations do affect the column
space. But all is not lost. The same dependence relations on the
columns of A (where they are obvious) hold for the columns of B.
Check some! Why is this? Well, Ax = 0 and Bx = 0 have the
same solution sets.

Let’s organize these observations in a theorem...
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The pivot columns of a matrix form a basis for the column space.

Note that we need to take the pivot columns of the original matrix!
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§4.3 Classwork
How about some T/F review for the midterm?

I A linear transformation T : Rn → Rm is onto if for each
x ∈ Rn, there is a b ∈ Rm such that T (x) = b. False

I A, B invertible =⇒ ((AB)−1)T = (AT )−1(BT )−1. True
I The solutions of a linear system are changed by row

operations. False
I T is onto if every column of [T ] has a pivot. False
I Any set containing the zero vector is linearly dependent. True
I For Ax = 0 to have a solution, A must have a pivot in every

row. False
I If {v1, v2, v3, v4} is a linearly dependent set, then

v4 ∈ Span{v1, v2, v3}. False
I T : Rn → Rn onto implies T one-to-one. True
I A invertible implies Ax = 0 has a nontrivial solution. False
I T (0) 6= 0 implies T is not linear. True
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