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Just for today

> §4.4 Finish up

» §4.5 Dimension
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The matrix of a linear transformation revisited

Consider a linear transformation T : V — W.

We can encode the map T in a matrix just like we did for
T :R" — R™ with the standard matrix.

Pick a basis B = {by,...,b,} of V
Pick a basis C = {c1,...,cm} of W.

We define the matrix of T relative to the bases 55 and C,
denoted [ T]3 by

el Tls = [[T(bo)le [T(b2)le - [T(ba)lc |-

How does this relate to coordinate vectors?
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§4.4 Change of coordinates

We can use the matrix of a linear transformation to write 8
coordinate vectors with respect to different bases (i.e. to change
coordinates). The key property of ¢[ T3 is that

[T(X¥)lc = c[T]slx]s

Thus, if B and C are bases of the same vector space V, then we
can relate the coordinate vectors of any element of x using the
identity linear transformation id : V — V in the following way.

[Xle = clidls[x]s |

The matrix ¢[id]; is called the change of coordinates matrix
from B to C. Let's see how this works in our classwork example
(back page)! https://math.dartmouth.edu/~m22x17/
section2lectures/classworkl15.pdf
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§4.4 Example (derivative)

Let T : P3 — P, be defined by T(p) = p’ (the first derivative).
Let B = {1,t,t2 t3} be the standard basis of P3.

Let C = {1,t,t°} be the standard basis of P?.

What is the matrix ¢[T]5? Well,

0100
el Tls = [ [T)e [T(0)le [T(R)e [T(H)e| = | 0020
0003
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§4.4 Example (derivative) continued

Let's use the matrix of the derivative (computed on the 765
previous slide) to verify something we already know namely

T(2+ 3t + 4t° + 5¢3).

Take B, C the standard bases in the domain and codomain
respectively. Then

[T(z + 3t + 482 + 5t3)]c = ¢[T]5[2 + 3t + 4t + 5¢%]5

which is equal to

0100 § 3
0020 al = 8
0003 5 15

and T(2+ 3t +4t> +5t3) = 3+ 8t + 15¢2.
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Theorem

Let V be a vector space with basis B = {b1,...,b,}. Then any
set of p vectors in V with p > n is linearly dependent.

Proof.

Map to coordinates and use the same fact about R” to get a
dependence relation. O
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Theorem

Let V' be a vector space with a basis B = {b1,...,b,}. Then
every basis of V' has exactly n vectors.

Proof.

Let B’ be another basis of V. By the previous theorem we have
the inequalities:

#B < 8
#B' < #B.
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§4.5 Definition of dimension

Definition
The dimension of {0} is 0.
Suppose V' # {0}. Let B be a basis of V.

If #B is finite, then the dimension of V is #B5.
If #B is infinite, then the dimension of V is infinite as well.

We denote the dimension of V by dim V.

Examples? What about subspaces?
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Theorem

Let H be a subspace of a finite-dimensional vector space V. Any
linearly indpendent set in H can be extended to a basis for H.
Moreover, H is finite-dimensional with dimension at most dim V.

Proof.

Let S be a linearly independent set in H. If S spans H then we are
done. If not, then there exists u; € H that is not in the span of S.
Append u; to S. Prove that the set S together with this new
element uj is linearly independent. lterate this process if necessary.
By finite-dimensionality of V, this process terminates in a finite
number of steps. O

Note that this proof works in the infinite-dimensional case as well,
but requires Zorn's Lemma.
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Theorem

Let V' be a vector space of dimension p > 1. Any set of p vectors
in V that is linearly independent is automagically a basis for V.

Any set of p vectors in V that spans V is automagically a basis for
V.

Proof.

Corollary of previous theorem and the spanning set theorem. O
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§4.5 Dimensions of Nul A and ColA

We have seen previously how to construct bases for Nul A and
ColA explicitly.

However, if we just want to compute their dimensions, then the
situation is even easier.

Theorem

The dimension of Nul A is the number of free variables in the
equation Ax = 0.

The dimension of ColA is the number of pivot columns in A.

What's the proof?
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§4.5 Classwork

Find the dimension of the subspace H of R3 defined by

x| x4+y=0
H= y|l:y+z=0
z x—z=0

Solution: First why is H a subspace? Because H = Nul A for

11 0
A=1]01 1
10-1

Now, how does this tell us the dimension of H?



