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Just for today

I §4.5 Finish up
I §4.6 Rank



§4.5 Theorem 11

Theorem
Let H be a subspace of a finite-dimensional vector space V . Any
linearly indpendent set in H can be extended to a basis for H.
Moreover, H is finite-dimensional with dimension at most dim V .

Proof.
Let S be a linearly independent set in H. If S spans H then we are
done. If not, then there exists u1 ∈ H that is not in the span of S.
Append u1 to S. Prove that the set S together with this new
element u1 is linearly independent. Iterate this process if necessary.
By finite-dimensionality of V , this process terminates in a finite
number of steps.

Note that this proof works in the infinite-dimensional case as well,
but requires Zorn’s Lemma.
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Theorem
Let V be a vector space of dimension p ≥ 1. Any set of p vectors
in V that is linearly independent is automagically a basis for V .
Any set of p vectors in V that spans V is automagically a basis for
V .

Proof.
Corollary of previous theorem and the spanning set theorem.
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§4.5 Dimensions of Nul A and ColA

We have seen previously how to construct bases for Nul A and
ColA explicitly.

However, if we just want to compute their dimensions, then the
situation is even easier.

Theorem
The dimension of Nul A is the number of free variables in the
equation Ax = 0.

The dimension of ColA is the number of pivot columns in A.

What’s the proof?
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§4.5 Classwork

Find the dimension of the subspace H of R3 defined by

H =


 x

y
z

 :
x + y = 0
y + z = 0
x − z = 0

 .

Solution: First why is H a subspace? Because H = Nul A for

A =

 1 1 0
0 1 1
1 0 −1

 .

Now, how does this tell us the dimension of H?
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§4.6 RowA

Let A be an m × n matrix.

We define the row space of A to be the span of the rows. The
row space of A is denoted by RowA.

How do row operations affect RowA? They don’t!

How do we find a basis for RowA? Take the pivot rows of the REF
of A. But the pivot rows of a matrix are just the nonzero rows in
the REF.

In §4.6 Theorem 13, we claim that the nonzero rows in the REF of
A form a basis of RowA. Why are these vectors linearly
independent?

So, given an m × n matrix A, we can find bases for Nul A, ColA,
and RowA.

Notice that RowA = ColAT .
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Let

A =

 1 2 1 0
−1 −2 2 3

0 0 5 5

 ∼
 1 2 1 0

0 0 1 1
0 0 0 0

 .

1. Find a basis for ColA. What is the dimension of ColA? What
vector space is ColA a subspace of?

2. Find a basis for Nul A. What is the dimension of Nul A? What
vector space is Nul A a subspace of?

3. Find a basis for RowA. What is the dimension of RowA?
What vector space is RowA a subspace of?

Can you see a relationship between the dimensions of these spaces
that will hold for general A?
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§4.6 The rank theorem

Theorem
Let A be an m× n matrix. First, the dimension of ColA equals the
dimension of RowA and we call this integer the rank of A.
Moreover, we have that

rankA + dim Nul A = n.

What’s the proof?

How can we use this theorem?
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§4.6 Examples

Let A be a 5× 10. Can Nul A have dimension 1? No! In fact, the
rank theorem gives us a lower bound on dim Nul A. How small can
dim Nul A be? 5. When do we have dim Nul A = 5? When the
rank of A is 5.

Now suppose A is a 10× 7 matrix. What are the possible values
for the rank of A? What are the possible values for the dimension
of Nul A?
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§4.6 Rank and the IMT

Let A be a square n × n matrix. The following are equivalent.

(d) The matrix equation Ax = 0 has only the trivial solution.
(e) The columns of A form a linearly independent set.
(g) Ax = b has at least one solution for each b in Rn.
(h) The columns of A span Rn.

(m) The columns of A form a basis of Rn.
(n) ColA = Rn.
(o) dim ColA = n.
(p) rank A = n.
(q) Nul A = {0}.
(r) dim Nul A = 0.

(m) ⇐⇒ (e) ⇐⇒ (h)
(g)⇒ (n)⇒ (o)⇒ (p)⇒ (r)⇒ (q)⇒ (d).
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