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Just for today

» §4.5 Finish up
» §4.6 Rank
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Let H be a subspace of a finite-dimensional vector space V. Any
linearly indpendent set in H can be extended to a basis for H.
Moreover, H is finite-dimensional with dimension at most dim V.

Proof.

Let S be a linearly independent set in H. If S spans H then we are
done. If not, then there exists u; € H that is not in the span of S.
Append u; to S. Prove that the set S together with this new
element uj is linearly independent. lterate this process if necessary.
By finite-dimensionality of V, this process terminates in a finite
number of steps. O

Note that this proof works in the infinite-dimensional case as well,
but requires Zorn's Lemma.
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Theorem

Let V' be a vector space of dimension p > 1. Any set of p vectors
in V that is linearly independent is automagically a basis for V.

Any set of p vectors in V that spans V is automagically a basis for
V.

Proof.

Corollary of previous theorem and the spanning set theorem. O
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We have seen previously how to construct bases for Nul A and
ColA explicitly.

However, if we just want to compute their dimensions, then the
situation is even easier.

Theorem

The dimension of Nul A is the number of free variables in the
equation Ax = 0.

The dimension of ColA is the number of pivot columns in A.

What's the proof?
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Find the dimension of the subspace H of R3 defined by

x| x4+y=0
H= y|l:y+z=0
z x—z=0

Solution: First why is H a subspace? Because H = Nul A for

11 0
A=1]01 1
10-1

Now, how does this tell us the dimension of H?
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Let A be an m X n matrix. Nz

We define the row space of A to be the span of the rows. The
row space of A is denoted by RowA.

How do row operations affect RowA? They don't!

How do we find a basis for RowA? Take the pivot rows of the REF

of A. But the pivot rows of a matrix are just the nonzero rows in
the REF.

In §4.6 Theorem 13, we claim that the nonzero rows in the REF of
A form a basis of RowA. Why are these vectors linearly
independent?

So, given an m x n matrix A, we can find bases for Nul A, ColA,
and RowA.

Notice that RowA = ColAT.
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1 210 1210
A=]1-1-223|~ (0011
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1. Find a basis for ColA. What is the dimension of ColA? What
vector space is ColA a subspace of?

2. Find a basis for Nul A. What is the dimension of Nul A? What
vector space is Nul A a subspace of?

3. Find a basis for RowA. What is the dimension of RowA?
What vector space is RowA a subspace of?

Can you see a relationship between the dimensions of these spaces
that will hold for general A?



§4.6 The rank theorem




§4.6 The rank theorem

Theorem



§4.6 The rank theorem

Theorem

Let A be an m X n matrix.



§4.6 The rank theorem

Theorem

Let A be an m x n matrix. First, the dimension of ColA equals the
dimension of RowA



§4.6 The rank theorem

Theorem

Let A be an m x n matrix. First, the dimension of ColA equals the
dimension of RowA and we call this integer the rank of A.



§4.6 The rank theorem

Theorem

Let A be an m x n matrix. First, the dimension of ColA equals the
dimension of RowA and we call this integer the rank of A.
Moreover, we have that

rankA +dim Nul A = n.



§4.6 The rank theorem

Theorem

Let A be an m x n matrix. First, the dimension of ColA equals the
dimension of RowA and we call this integer the rank of A.
Moreover, we have that

rankA +dim Nul A = n.

What's the proof?



§4.6 The rank theorem

Theorem

Let A be an m x n matrix. First, the dimension of ColA equals the
dimension of RowA and we call this integer the rank of A.
Moreover, we have that

rankA +dim Nul A = n.

What's the proof?

How can we use this theorem?
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Let A be a5 x 10. Can Nul A have dimension 17 No! In fact, the
rank theorem gives us a lower bound on dim Nul A. How small can
dim Nul A be? 5. When do we have dim Nul A =57 When the
rank of A is 5.

Now suppose A is a 10 x 7 matrix. What are the possible values
for the rank of A? What are the possible values for the dimension

of Nul A?
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) The columns of A form a linearly independent set.

)
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Let A be a square n x n matrix. The following are equivalent. 3762~

(d) The matrix equation Ax = 0 has only the trivial solution.
(e) The columns of A form a linearly independent set.
(g) Ax = b has at least one solution for each b in R".
(h) The columns of A span R".
(m) The columns of A form a basis of R”.
(n) ColA=R".
(o) dim ColA = n.
(p) rank A= n.
(q) NulA={0}.

)

(r) dimNulA=0.

(m) < (e) < (h)
(&) = (n) = (o) = (p) = (r) = (q) = (d).



