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§4.6 Rank and the IMT

Let A be a square n x n matrix. The following are equivalent. 3762~

(d) The matrix equation Ax = 0 has only the trivial solution.
(e) The columns of A form a linearly independent set.
(g) Ax = b has at least one solution for each b in R".
(h) The columns of A span R".
(m) The columns of A form a basis of R”.
(n) ColA=R".
(o) dim ColA = n.
(p) rank A= n.
(q) NulA={0}.

)

(r) dimNulA=0.

(m) < (e) < (h)
(&) = (n) = (o) = (p) = (r) = (q) = (d).
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§5.1 Definition of eigenvector and eigenvalue

Definition

Let A be an n x n matrix. An eigenvector of A is a nonzero
vector x in R” such that

Ax=Xx, A eR.

An eigenvalue of A is a scalar A\ € R if there exists a nonzero
vector x such that Ax = Ax.

In the situation where Ax = Ax we say that x is an eigenvector
corresponding to .
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Question: Can an eigenvalue have more than one eigenvector? 72~
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Yes! Example? Let A l03]. Let u;y L] Let us [01

Check that u; and uy are eigenvectors for A.
What are their corresponding eigenvalues?
Can you find any other eigenvectors using u; and uy?

Question: Can an eigenvector have more than one eigenvalue?
No! Why?

Here are some nice animations to help visualize eigenvectors:
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Question: Can an eigenvalue have more than one eigenvector? 79"
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Yes! Example? Let A l03]. Let u;y L] Let us [01

Check that u; and uy are eigenvectors for A.
What are their corresponding eigenvalues?
Can you find any other eigenvectors using u; and uy?

Question: Can an eigenvector have more than one eigenvalue?
No! Why?

Here are some nice animations to help visualize eigenvectors:

https://www.youtube.com/playlist?list=
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§5.1 Finding eigenvectors

Let A= 12 as on the previous slide. Suppose we are told that

3 is an eigenvalue of A. How can we find all eigenvectors
corresponding to this eigenvalue?

Well, first notice that 3x = (3h)x. Then Ax = 3x implies
(A—3hk)x =0. So what? The eigenvectors corresponding to the
eigenvalue 3 are precisely the vectors in the nullspace of A — 3.

Now,
-22
A—3l2—[ 00].

Check that this matrix has a 1-dimensional nullspace spanned by
u; from the previous slide.

This is our first example of an eigenspace which we now define...
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§5.1 Definition of eigenspace

Let A be an n x n matrix. As we saw, X is an eigenvector for A
precisely when x € Nul(A — A/,).

We define the eigenspace of A corresponding to A to be
Nul(A — Al,).

What are the eigenspaces for A = l(l) :2)’] ?



§5.1 Classwork

—6 16
p— 1 p— ?
1. 1Isx [ 5] an eigenvector for A l5 2] /

2. Is A = 3 an eigenvalue of A?

4-16
3. Let B=|2 16|. The eigenvalues are A =2,9. Find a
2-18

basis for the eigenspace corresponding to A = 2. What is the
dimension of this space?

4. Using A and x defined above, compute A?x, A3x, ..., AFx.

5. Using A defined above, write A— Al as a matrix (for arbitrary
A). Now compute det(A — Ak). For what values of A is
det(A— \h) =07
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Proof.

Let A= (a;). A is an eigenvalue of A if and only if the null space

of A — Al, contains a nonzero vector. Write out A — A/, under the
assumption that A is triangular to show that (A — Al,)x = 0 has a
free variable precisely when A = ay, for some k < n. O
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the entries along the main diagonal of A.

Proof.

Let A= (a;). A is an eigenvalue of A if and only if the null space

of A — Al, contains a nonzero vector. Write out A — A/, under the
assumption that A is triangular to show that (A — Al,)x = 0 has a
free variable precisely when A = ay, for some k < n. O

Suppose A has A = 0 as an eigenvalue?



§5.1 Theorem 1

Theorem

Let A be a triangular n x n matrix. Then the eigenvalues of A are
the entries along the main diagonal of A.

Proof.

Let A= (a;). A is an eigenvalue of A if and only if the null space

of A — Al, contains a nonzero vector. Write out A — A/, under the
assumption that A is triangular to show that (A — Al,)x = 0 has a
free variable precisely when A = ay, for some k < n. O

Suppose A has A = 0 as an eigenvalue? What can you say about
the invertibility of A?
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Theorem

Let A be an n x n matrix. Let vy,...,v, be eigenvectors
corresponding to distinct eigenvalues A1, ..., )\, for A. Then
{vi,...,v,} is a linearly independent set.

We will prove this by contradiction.
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Multiply by A on both sides to get
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§5.1 Proof of Theorem 2

Proof.

For contradiction, suppose {vi,...,v,} is dependent. Then some
vector in this set is a linear combination of the vectors listed before
it. Let p be the least index such that v, 1 has this property. Then

|vp+1 =cvi+ -+ GVp |

Multiply by A on both sides to get
Avpi1 = Acivy + - - 4+ Acpvp = c1Avy + - - - + AV,

Now use that these are eigenvectors. We get that

Ap+1Vpi1 = CIAIVL + -+ + CpApVp |

How can we use the boxed equations to get a contradiction? O
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§5.1 Eigenvectors and difference equations

Suppose we have a difference equation:
Xk+1:AXk, k:O,l,Q,....

Moreover, suppose Xg is an eigenvector of A.

How can we use this to simplify the computation of x, for large
values of k?



