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Just for today

» §5.1 Finish up

» §5.2 Characteristic polynomials
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Theorem

Let A be a triangular n X n matrix. Then the eigenvalues of A are
the entries along the main diagonal of A.

Proof.

Let A= (aj). Ais an eigenvalue of A if and only if the null space

of A — \l, contains a nonzero vector. Write out A — A/, under the
assumption that A is triangular to show that (A — Al,)x = 0 has a
free variable precisely when A = ay, for some k < n. ]
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Let A be an n x n matrix. Let vy,...,v, be eigenvectors
corresponding to distinct eigenvalues A1, ..., )\, for A. Then
{vi,...,v,} is a linearly independent set.

We will prove this by contradiction.
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Proof. Nz7697

For contradiction, suppose {vi1,...,v,} is dependent. Then some
vector in this set is a linear combination of the vectors listed before
it with all preceding vectors linearly independent. Let p be the
least index such that v, has this property. Then

Vpil = CIV1 + -+ CpVp |, with {v1,...,v,} independent.

Multiply by A on both sides to get
Avpi1 = Acivr + - - + Acpvp = 1AL + - -+ oAV,

Now use that these are eigenvectors. We get that

)\p+1vp+1 =qA\vi+ -+ c,,/\pvp .
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Proof. 7627

For contradiction, suppose {vi1,...,v,} is dependent. Then some
vector in this set is a linear combination of the vectors listed before
it with all preceding vectors linearly independent. Let p be the
least index such that v, has this property. Then

Vpil = CIV1 + -+ CpVp |, with {v1,...,v,} independent.

Multiply by A on both sides to get
Avpi1 = Acivr + - - + Acpvp = 1AL + - -+ oAV,

Now use that these are eigenvectors. We get that

)\p+1vp+1 =qA\vi+ -+ cp/\pvp .

How can we use the boxed equations to get a contradiction? O
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§5.2 IMT again

Suppose A has A = 0 as an eigenvalue? What can you say about
the invertibility of A?

Theorem
Let A be a square n X n matrix. The following are equivalent.

(s) A =0 is not an eigenvalue of A.

(t) det(A) #0.
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Let A be an n x n matrix. Let A € R. X\ is an eigenvalue of A if
and only if X satisfies the characteristic equation

det(A — Al,) = 0.

Note that det(A — Al,) is a polynomial in X called the
characteristic polynomial. An eigenvalue of A corresponds to a
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algebraic multiplicity of the eigenvalue.
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A is an eigenvalue of A precisely when (A — A\;)x =0 has a
nontrivial solution.
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Theorem 7627

Let A be an n x n matrix. Let A € R. X\ is an eigenvalue of A if
and only if X satisfies the characteristic equation

det(A — Al,) = 0.

Note that det(A — Al,) is a polynomial in X called the
characteristic polynomial. An eigenvalue of A corresponds to a
root of the charpoly of A. The multiplicity of the root is called the
algebraic multiplicity of the eigenvalue.

Proof.

A is an eigenvalue of A precisely when (A — A\;)x =0 has a
nontrivial solution. This is equivalent to A — A/, not being
invertible.
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Theorem 7627

Let A be an n x n matrix. Let A € R. X\ is an eigenvalue of A if
and only if X satisfies the characteristic equation

det(A — Al,) = 0.

Note that det(A — Al,) is a polynomial in X called the
characteristic polynomial. An eigenvalue of A corresponds to a
root of the charpoly of A. The multiplicity of the root is called the
algebraic multiplicity of the eigenvalue.

Proof.

A is an eigenvalue of A precisely when (A — A\;)x =0 has a
nontrivial solution. This is equivalent to A — A/, not being
invertible. But A — A/, is invertible precisely when

det(A — \l,) #0. O]
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Definition 7697

Let A and B be n x n matrices. A is similar to B if there exists an
invertible matrix P such that

P~'AP =B.

Theorem

Similar matrices have the same charpoly.

Proof.
Let P1AP = B.
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Definition Nz7697

Let A and B be n x n matrices. A is similar to B if there exists an
invertible matrix P such that

P~1AP = B.

Theorem

Similar matrices have the same charpoly.

Proof.
Let P~1AP = B. Then

det(B—Alp) = det (P~ (A=\I,)P) = det(P~") det(A—\l,) det(P).

O
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.95 .03 .6 :
Let A= 05 97 . Xg = ['4 , and Xpy1 = Axg. Nz

What is the long-term behavior of x,?

» Find the eigenvalues of A: \; =1, Ao =23/25

» Find corresponding eigenvectors:

" [S/H’ " [—”

» Write xg as a linear combination of vy, vy:

xo = (3/8)v1 + (9/40)v,



§5.2 Long-term behavior analysis

.95 .03 6 /
Let A= 05 97 . Xg = ['4 , and Xpy1 = Axg. Nz

What is the long-term behavior of x,?

v

Find the eigenvalues of A: A\; =1, A\ =23/25

Find corresponding eigenvectors:

" [5/:1%]’ " [—”

Write x¢ as a linear combination of vy, vo:

v

v

xo = (3/8)v1 + (9/40)v,

v

xi = AK((3/8)v1 + (9/40)vs ) = (3/8)Nsv + (9/40) v

X0




§5.2 Classwork

Find the eigenvalues of the following matrices:

16
Ca-[tg
(1 -1
Cac [
5 0
3 A= 0_5]

[ 1 3 3
4 A=|-3-5-3
| 3 3 1
[—790
5 A=| 013
| 001




§5.2 Classwork Solutions

Find the eigenvalues of the following matrices:

1. A= ; g] , charpoly(A) = (A+4)(A—=T7)
(1 -1
2. A= 1 ] charpoly(A) = A\* — 2\ 42
(-5 0 2
3. A= 0_s| charpoly(A) = (A + 5)
1 3 3
4. A= | =3 =5 =3[, charpoly(A) = (A — 1)(\ + 2)?
i 3 3 1
[—790
5. A= 013], charpoly(A) = (A+7)(\—1)?
001
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[—790
Let A= | 013/, charpoly(A) = (A +7)(A — 1)2.
001

What is the dimension of the A = 1 eigenspace? 1.

1 3 3
Let A= | =3 =5 —3 |, charpoly(A) = (A — 1)(\ + 2)2.
3 31

What is the dimension of the A\ = —2 eigenspace? 2.

Both eigenvalues have algebraic multiplicity 2 but their
geometric multiplicities are not equal.



