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Just for today

I §6.3 Orthogonal projections
I §6.5 Least squares problems (start)



Last time

Theorem
Suppose U is an orthogonal matrix (i.e. U is square and
U−1 = UT ). Then U has orthonormal columns and rows.

Proof.
We proved last time that any matrix U has orthonormal columns if
and only if UT U = In. But U−1 = UT , so U has orthonormal
columns. What about the rows? Well, the rows of U are the
columns of UT . So we win if we can show UT has orthonormal
columns. But to do that we can use the above theorem again with
UT instead of U. How? Well,

(UT )T (UT ) = U(UT )

But UT = U−1. So (UT )T (UT ) = U(UT ) = UU−1 = In.
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§6.3 Theorem 8

Theorem
Let W be a subspace of Rn. Suppose {u1, . . . , up} is an
orthogonal basis for W . Then every y ∈ Rn can be written
uniquely as y = ŷ + z where ŷ ∈W and z ∈W⊥. In particular,

ŷ = y · u1
u1 · u1

u1 + · · ·+ y · up
up · up

up, z = y− ŷ.

We call ŷ the orthogonal projection of y onto W .

ŷ is also denoted by projW y.

So what’s the proof?
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uniquely as y = ŷ + z where ŷ ∈W and z ∈W⊥. In particular,
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where ŷ ∈W and z ∈W⊥. In particular,
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§6.3 Proof of Theorem 8

Proof.
Certainly ŷ ∈W . Is z ∈W⊥? Well,

z · ui = (y− ŷ) · ui = y · ui − ŷ · ui = y · ui −
( y · ui

ui · ui
ui

)
· ui .

What justifies the last equality? So y = ŷ + z ∈W + W⊥.

How do we show uniqueness? Suppose y = ŷ + z = ŷ1 + z1 with
ŷ, ŷ1 ∈W and z, z1 ∈W⊥. The boxed equation implies

ŷ− ŷ1︸ ︷︷ ︸
∈W

= z1 − z︸ ︷︷ ︸
∈W ⊥

.

Let v denote this vector. What does this equation tell us about v?
v · v = 0. So what? v = 0.
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ŷ− ŷ1︸ ︷︷ ︸
∈W

= z1 − z︸ ︷︷ ︸
∈W ⊥

.

Let v denote this vector. What does this equation tell us about v?
v · v = 0. So what? v = 0.



§6.3 Proof of Theorem 8

Proof.
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( y · ui

ui · ui
ui

)
· ui .

What justifies the last equality? So y = ŷ + z ∈W + W⊥.
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ŷ− ŷ1︸ ︷︷ ︸
∈W

= z1 − z︸ ︷︷ ︸
∈W ⊥

.

Let v denote this vector.

What does this equation tell us about v?
v · v = 0. So what? v = 0.



§6.3 Proof of Theorem 8

Proof.
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.

Let v denote this vector. What does this equation tell us about v?
v · v = 0. So what? v = 0.



§6.3 Example

Let

y =

−1
4
3

 , u1 =

 1
1
1

 , u2 =

−1
3
−2

 .

Let W be the span of u1 and u2. Find the projection of y onto W
and the distance from y to W .

Solution: Well,

ŷ = y · u1
u1 · u1

u1 + y · u2
u2 · u2

u2 = 6
3

 1
1
1

+ 7
14

−1
3
−2

 =

 3/2
7/2

1


and

z = y−ŷ =

−5/2
1/2

2

 =⇒ ‖z‖ =
√

4 + 26/4 = 3.2015621187164...
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§6.3 Theorem 9 (Best Approximation)

Theorem
Let W be a subspace of Rn. Let y ∈ Rn. Let ŷ be the orthogonal
projection of y onto W . Then ŷ is the point in W that is closest
to y. More precisely, for every v ∈W with v 6= ŷ we have the strict
inequality

‖y− ŷ‖ < ‖y− v‖ .

Proof.
What’s the proof in 2 words? Pythagorean Theorem.

‖y− v‖2 = ‖y− ŷ‖2 + ‖ŷ− v‖2︸ ︷︷ ︸
>0

.

Draw a picture!
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inequality
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‖y− ŷ‖ < ‖y− v‖ .

Proof.
What’s the proof in 2 words? Pythagorean Theorem.
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projection of y onto W . Then ŷ is the point in W that is closest
to y. More precisely, for every v ∈W with v 6= ŷ we have the strict
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§6.5 Some motivation for doing this

Consider an inconsistent linear system Ax = b.
Let W = ColA and b̂ := projW b. Then there is a solution x̂ to
Ax̂ = b̂ since b̂ ∈ ColA. So what? Well, in light of the previous
theorem, we have

∥∥∥b− b̂
∥∥∥ < ‖b− v‖ for any v ∈W with v 6= b̂.

Now b̂ = Ax̂ and v ∈W = ColA mean v = Ax for some x. So the
boxed equation becomes

‖b− Ax̂‖ < ‖b− Ax‖ , for any x ∈ Rn.

A solution x̂ of Ax̂ = b̂ is called a least squares solution of
Ax = b. If Ax = b is consistent, then ‖Ax− b‖ = 0, but if the
system is inconsistent, then ‖Ax− b‖ > 0, and this positive
number represents the error in being able to find a solution.

The least squares solution x̂ minimizes this error.

More of this next week.
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§6.3 Theorem 10

Recall theorem 8 from today. What happens if we insist that our
basis for W be orthonormal instead of just orthogonal?

Theorem
Let y ∈ Rn. Let W be a subspace of Rn with orthonormal basis
{u1, . . . , up}. Then

projW y = (y · u1)u1 + · · ·+ (y · up)up.

Moreover, if we let U = [u1 · · · up], then

projW y = UUT y.
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§6.3 Proof of Theorem 10

Proof.
The equation projW y = (y · u1)u1 + · · ·+ (y · up)up follows
immediately from Theorem 8 since {ui} is orthonormal.

Since U is the matrix whose columns are the ui , the boxed
expression is a linear combination of the columns of U with
weights y · ui . These weights are y · ui = ui · y = uT

i y. Thus,

UT y =

 y · u1
...

y · up

 =

 uT
1 y
...

uT
p y

 .

Thus
projW y = (uT

1 y)u1 + · · ·+ (uT
p y)up = U(UT y) = UUT y.

Let’s finish with an example.
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§6.3 Example

Let v1 =

 1
1
−2

 , v2 =

 5
−1

2

, W = {v1, v2}, and y =

 0
0
1

 .

Find projW y and find a vector orthogonal to both v1 and v2.

projW y = y · v1
v1 · v1

v1+ y · v2
v2 · v2

v2 = −2
6

 1
1
−2

+ 2
30

 5
−1

2

 =

 0
−2/5

4/5

 .

Thus z = y− ŷ =

 0
0
1

−
 0
−2/5

4/5

 =

 0
2/5
1/5

 is a vector

orthogonal to v1 and v2. Note that we don’t have an orthonormal
basis for W . How do we obtain one?
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§6.3 Example continued

Let u1, u2 be v1, v2 normalized. Then

U = [u1 u2] =

 1/
√

6 5/
√

30
1/
√

6 −1/
√

30
−2/
√

6 2/
√

30

 ,

and

UUT =

 1/
√

6 5/
√

30
1/
√

6 −1/
√

30
−2/
√

6 2/
√

30

[ 1/
√

6 1/
√

6 −2/
√

6
5/
√

30 −1/
√

30 2/
√

30

]

=

 1/3 0 0
0 2/15 −2/5

−1/3 −2/5 4/5

 .

Now that we have computed UUT , what do you think we should
check? That UUT y matches our computation of projW y from
before!
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§6.3 Example concluded
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algorithm to compute it! If you simply can’t wait, take a look at
§6.4 in the textbook over the weekend.
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