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Just for today

I §6.4 Finish up
I §6.5 Least-squares problems



§6.4 Gram-Schmidt Review

Consider a basis {x1, . . . , xp} for a subspace W ⊆ Rn. We saw
that the Gram-Schmidt algorithm produces an orthogonal basis
{v1, . . . , vp} where v1 = x1 and for k ∈ {2, . . . , p} we have

vk = xk −
(k−1∑

i=1

xk · vi
vi · vi

vi

)
.

Moreover, Span{v1, . . . , vk} = Span{x1, . . . , xk} for every
k ∈ {1, . . . , p}.
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§6.4 QR factorization review

Let A = [x1 · · · xn] be an m × n matrix with linearly independent
columns. Via the Gram-Schmidt algorithm we can construct an
orthonormal basis {u1, . . . , un} for Col A. Let Q = [u1 · · · un].
Since xk ∈ Span{u1, . . . , uk}, we can write

xk = r1ku1 + · · ·+ rkkuk + 0uk+1 + · · ·+ 0un = Qrk , rk =



r1k
...

rkk
0
...
0


Then R := [r1 · · · rn] is upper triangular and
A = [x1 · · · xn] = [Qr1 · · · Qrn] = QR. How do we guarantee
that the diagonal of R is nonnegative?
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§6.5 Least-squares solutions

Definition
Let A be an m × n matrix. Let b ∈ Rn. A least-squares solution
of the matrix equation Ax = b is a vector x̂ ∈ Rn such that

‖Ax̂− b‖ ≤ ‖Ax− b‖

for all x ∈ Rn.

The least-squares error is ‖b− Ax̂‖ (the distance between b and
Ax̂).

We can obtain a least-squares solution via projection. Let
W = Col A. Let b̂ = projW b. Then Ax = b̂ is consistent, and any
solution x̂ is a least-squares solution. Why? Best approximation
theorem.

Let’s see how the details work.
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§6.5 Example K

Let A = [a1 a2] =


2 1
5 1
7 1
8 1

, and b =


1
2
3
3

. Is Ax = b consistent?

No! Let’s find a least-squares solution.

Let W = Col A and verify that {a1, a2} is a basis. Let
b̂ = projW b. To compute b̂ there are many options. One is to use
an orthogonal basis for W . Glad we know how to find these! Let
v1 = a1. Let

v2 = a2 −
a2 · v1
v1 · v1

v1 =


49/71
16/71
−6/71
−17/71

 .

So W has orthogonal basis {v1, v2}.
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§6.5 Example K continued

We can now compute

b̂ = b · v1
v1 · v1

v1 + b · v2
v2 · v2

v2 =


1

29/14
39/14

22/7

 .

Now to find a least-squares solution we can simply use the
augmented matrix

[A b̂] ∼


1 0 5/14
0 1 2/7
0 0 0
0 0 0


to get that x̂ =

[
5/14

2/7

]
is a least-squares solutions to Ax = b.
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§6.5 Example K continued

Alternatively, we can use the QR factorization of A to
compute b̂. Let ui = vi/ ‖vi‖ for i = 1, 2. Then

Q = [u1 u2] =


2/
√

142 (49/71)/
√

42/71
5/
√

142 (16/71)/
√

42/71
7/
√

142 (−6/71)/
√

42/71
8/
√

142 (−17/71)/
√

42/71


and

R = QT A =
[√

142 (11/71)
√

142
0

√
42/71

]
and

QQT =


5/6 1/3 0 −1/6
1/3 11/42 3/14 4/21

0 3/14 5/14 3/7
−1/6 4/21 3/7 23/42

 .

What is b̂? b̂ = QQT b. We then find x̂ = [5/14 2/7]T as before.
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§6.5 Theorem 13

In the previous example, most of the work was in computing the
projection b̂. It turns out that we don’t need to do this to obtain a
least-squares solution x̂.

Theorem
The set of least-squares solutions of Ax = b is precisely the
solutions of AT Ax = AT b . The linear system represented by the
boxed equation represents a system of linear equations called the
normal equations for Ax = b.
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§6.5 Proof of Theorem 13

Proof.
Let A = [a1 . . . an]. Let W = Col A.

(⊆)
Suppose Ax̂ = b̂. Then b− b̂ = b− Ax̂ is in W⊥. This means
that b− Ax̂ is orthogonal to every column of A (every row of AT ).
But this means that AT (b− Ax̂) = 0 so that AT Ax̂ = AT b.

(⊇)
Conversely, suppose AT Ax̂ = AT b. Then AT (b− Ax̂) = 0 so that
b− Ax̂ is orthogonal to the rows of AT (columns of A). Thus
b− Ax̂ ∈W⊥. Moreover, we have

b = Ax̂︸︷︷︸
∈W

+ b− Ax̂︸ ︷︷ ︸
∈W ⊥

By the uniqueness of orthogonal decompositions, Ax̂ must be the
projection of b onto W . That is, Ax̂ = b̂.
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§6.5 Example K continued

Let’s revisit our example using the previous theorem.
We are given A and b. We compute

AT A =
[

2 5 7 8
1 1 1 1

]
2 1
5 1
7 1
8 1

 =
[

142 22
22 4

]

AT b =
[

2 5 7 8
1 1 1 1

]
1
2
3
3

 =
[

57
9

]

How do we find x̂?[
142 22 57

22 4 9

]
∼
[

1 0 5/14
0 1 2/7

]
.
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Are least-squares solutions always unique? No!
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0
2
5
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AT A =


6 2 2 2
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§6.5 Theorem 14

Given the contrast between example K and example ,
one might like to know when a least-squares solution is unique...

Theorem
Let A be an m × n matrix. The following are equivalent:

1. The equation Ax = b has a unique least-squares solution for
every b ∈ Rm

2. The columns of A are linearly independent
3. AT A is invertible

When these hold, we have x̂ = (AT A)−1AT b.

Due to time constraints we will omit the proof.

Question: What does this theorem tell us about AT A and the
columns of A from example .

AT A is not invertible, and the columns of A are linearly dependent.
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§6.5 Example K continued

We found previously, that this example has a unique least-squares
solution. By the previous theorem we can compute

x̂ = (AT A)−1AT b

=
[

1/21 −11/42
−11/42 71/42

]
AT b

=
[
−1/6 −1/42 1/14 5/42

7/6 8/21 −1/7 −17/42

]
1
2
3
3


=
[

5/14
2/7

]
.
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Theorem
Let A be an m × n matrix with linearly independent columns. Let
A = QR be a QR factorization of A. Then for every b ∈ Rm, The
equation Ax = b has a unique least-squares solution given by

x̂ = R−1QT b.

Proof.
By the previous theorem, Ax = b has a unique least-squares
solution, so we just need to check that the given x̂ works. But

Ax̂ = QR x̂
= QRR−1QT b
= QQT b = b̂.
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§6.5 Example K continued

Using the previously computed Q and R, we verify the theorem in
this example as follows.

x̂ = R−1QT b

=
[
−1/6 −1/42 1/14 5/42

7/6 8/21 −1/7 −17/42

]
1
2
3
3


=
[

5/14
2/7

]
.

Note that this also shows the unilluminating fact that
(AT A)−1AT = R−1QT when defined.
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§6.5 Example K concluded

Consider the quantitative data (2, 1), (5, 2), (7, 3), (8, 3) in the
(t, y)-plane. How do we find a line y = ct + d that “best fits” this
data? Well, to do this we need a notion of error. One might
measure this error using “squared residuals”. Draw a picture. In
our case, this error is given by

4∑
i=1

(yi−cti−d)2 = (1−2c−d)2+(2−5c−d)2+(3−7c−d)2+(3−8c−3)2.

If we let A =


2 1
5 1
7 1
8 1

 , b =


1
2
3
3

 , x =
[

c
d

]
, then the above

error for a given x is precisely ‖b− Ax‖2. This quantity is
minimized precisely when you guessed it x is a least-squares
solution to Ax = b. x̂ = [5/14 2/7]T .
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Consider the quantitative data (2, 1), (5, 2), (7, 3), (8, 3) in the
(t, y)-plane. How do we find a line y = ct + d that “best fits” this
data? Well, to do this we need a notion of error. One might
measure this error using “squared residuals”. Draw a picture. In
our case, this error is given by
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§6.5 Example K concluded

From the least-squares solution we obtain
the line y = (5/14)t + (2/7)
that best fits
the data (2,1),(5,2),(7,3),(8,3) :
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