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Just for today

» §6.4 Finish up

» §6.5 Least-squares problems
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Consider a basis {x1,...,X,} for a subspace W C R". We saw
that the Gram-Schmidt algorithm produces an orthogonal basis
{v1,...,vp} where vi = x; and for k € {2,..., p} we have
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1
Vi, — — . .
k= Xk (Z o v,>

i=1

Moreover, Span{vi,...,vx} = Span{xi,...,Xxx} for every

ke{l,...,p}.
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§6.4 QR factorization review

Let A= [x1 --- X,] be an m x n matrix with linearly independent
columns. Via the Gram-Schmidt algorithm we can construct an
orthonormal basis {uy,...,u,} for Col A. Let Q@ =[uy -+ up].
Since x4 € Span{uy,...,ux}, we can write

X = rgus+ -+ g+ Oug g+ -+ 0u, = Qry, 1 =

Then R:=[ry - r,] is upper triangular and
A=[x1 --- xp] =[Qr1 -+ Qrp] = QR. How do we guarantee
that the diagonal of R is nonnegative?
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Definition

Let A be an m x n matrix. Let b € R". A least-squares solution
of the matrix equation Ax = b is a vector X € R” such that

|AX - b|| < [|Ax — b]|

for all x € R".

The least-squares error is ||b — AX|| (the distance between b and
AR).

We can obtain a least-squares solution via projection. Let

W = Col A. Let b = projyy b. Then Ax = b is consistent, and any
solution X is a least-squares solution. Why? Best approximation
theorem.

Let's see how the details work.
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21
51
71
81
No! Let's find a least-squares solution.

Let A=[a; a2] = cand b = . Is Ax = b consistent?

W whN =

Let W = Col A and verify that {a;,az} is a basis. Let

b= projiy b. To compute b there are many options. One is to use
an orthogonal basis for W. Glad we know how to find these! Let
vi — a;. Let

49/71

V2:a2—a2‘VIV1: 16/71
Vi Vi —6/71

—17/71

So W has orthogonal basis {v1,v>}.
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We can now compute

1

~ b-V1 b~V2 29/14
b: =

A v1V1 + Vo - Vzv2 39/14

22/7

Now to find a least-squares solution we can simply use the
augmented matrix

105/14

01 2/7

00 0

00 0

[AB] ~

5/14

to get that X = [ 2/7

] is a least-squares solutions to Ax = b.
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Alternatively, we can use the QR factorization of A to N7
compute b. Let u; = v;/ ||vj|| for i =1,2. Then

2/V/142 (49/71)//42/71
0— | 5/V142  (16/71)//42/71
=lwvwl =17 1 (Cejm1))a2
8/v142 (—17/71)//42/71
and
R—QTA— V142 (11/71)/142
N N 0 V42/71
e 5/66 1/3 0 —1/6
Q07 — 1/311/42 3/14 4/21

0 3/145/14 3,7
~1/6 4/21 3/723/42

What is b? b = QQ7b. We then find & = [5/14 2/7]T as before.
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In the previous example, most of the work was in computing the
projection b. It turns out that we don’t need to do this to obtain a
least-squares solution X.

Theorem

The set of least-squares solutions of Ax = b is precisely the

solutions of | AT Ax = ATb|. The linear system represented by the

boxed equation represents a system of linear equations called the
normal equations for Ax = b.
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Suppose AXx = b. Then b —b = b — A% is in W.. This means

that b — A% is orthogonal to every column of A (every row of AT).
But this means that AT (b — AX) = 0 so that AT Ax = ATb.

(2)

Conversely, suppose ATAx = ATb.
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Proof. 762
Let A=[a; ... a,]. Let W = Col A.

(<)

Suppose AXx = b. Then b —b = b — A% is in W.. This means
that b — A% is orthogonal to every column of A (every row of AT).
But this means that AT (b — AX) = 0 so that AT Ax = ATb.

(2
Conversely, suppose AT Ax = ATb. Then AT(b — A%) = 0 so that
b — A% is orthogonal to the rows of A7 (columns of A). Thus
b — Ax € WL. Moreover, we have
b= Ax +b — Ax

~ =

cw cwi
By the uniqueness of orthogonal decompositions, AX must be the
projection of b onto W. That is, AXx = b. O
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Let's revisit our example using the previous theorem. ST
We are given A and b. We compute

21
T, 257851 14222
AA_lllll 71 | 22 4
81
1
2578 |2 57
Th — —
Ab_[llll] 3_[9]
3

How do we find X7

142 22 57 105/14
2 4 9 01 2/7|
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Theorem

Let A be an m x n matrix. The following are equivalent:
1. The equation Ax = b has a unique least-squares solution for

every b € R™
2. The columns of A are linearly independent

3. AT A is invertible
When these hold, we have x = (AT A)~1ATb.

Due to time constraints we will omit the proof.

Question: What does this theorem tell us about AT A and the
columns of A from example A.

AT A is not invertible, and the columns of A are linearly dependent.
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We found previously, that this example has a unique least-squares
solution. By the previous theorem we can compute

x=(ATA)ATb
1721 —11/42 ATh
T —11/42 71/42

[—1/6 —1/42 1/14  5/42
7/6 8/21 —1/7 —17/42

W w N

_[5/14
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Theorem %
Let A be an m x n matrix with linearly independent columns. Let

A = QR be a QR factorization of A. Then for every b € R™, The
equation Ax = b has a unique least-squares solution given by

£=R'Q"b.

Proof.

By the previous theorem, Ax = b has a unique least-squares
solution, so we just need to check that the given X works. But

A% = QR%
= QRR1Q"b
= QQ"b =b.
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§6.5 Example s continued

Using the previously computed @ and R, we verify the theorem in
this example as follows.

£$=R Qb
) 1
[-1/6 —1/42 1714 5/42] |2
~ | 7/6 8/21 —1/7 —17/42] |3
3
~[5/14
| 27|

Note that this also shows the unilluminating fact that
(ATA)LAT = R71QT when defined.
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Consider the quantitative data (2,1),(5,2),(7,3),(8,3) in the
(t,y)-plane. How do we find a line y = ct + d that “best fits” this
data? Well, to do this we need a notion of error. One might
measure this error using “squared residuals”. Draw a picture. In
our case, this error is given by

Z(y, cti—d)? = (1-2c—d)*+(2—5¢c—d)*+(3—7c—d)*+(3—8c—3)>.
21 1
51 2 c

If we let A= N b= E x-ld],thentheabove
81 3

error for a given x is precisely ||b — Ax||?. This quantity is
minimized precisely when you guessed it x is a least-squares
solution to Ax = b. % = [5/14 2/7]T.



§6.5 Example s concluded




i

§6.5 Example s concluded

From the least-squares solution we obtain



i

§6.5 Example s concluded

From the least-squares solution we obtain
the line y = (5/14)t + (2/7)



i

§6.5 Example s concluded

From the least-squares solution we obtain
the line y = (5/14)t + (2/7)
that best fits



§6.5 Example s concluded

From the least-squares solution we obtain
the line y = (5/14)t + (2/7)

that best fits

the data (2,1),(5,2),(7,3),(8,3) :



§6.5 Example s concluded

From the least-squares solution we obtain
the line y = (5/14)t + (2/7)

that best fits

the data (2,1),(5,2),(7,3),(8,3) :

y
A /'




