Answers to the first hour exam

1 (i) Let $A=\binom{1}{2}, B=\left(\begin{array}{ll}1 & 2\end{array}\right)$.
(ii) Let $A=\left(\begin{array}{ll}1 & 2\end{array}\right), B=A$.
(iii) Let A be $m \times n, B$ be $p \times q$. Since $A+B$ is defined, $m=p$ and $n=q$. Since $A B$ is defined, $p=n$. So both A and B are $n \times n$, so $B A$ is defined.
(iv) $-I_{n}$ is invertible (its inverse is itself), so A and B are invertible.

2 (i) $\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)=\frac{1}{2}\left(\begin{array}{c}2 \\ -4 \\ 6\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 3 \\ 3\end{array}\right)=\left(\begin{array}{c}2 \\ -4 \\ 6\end{array}\right)-\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right)$ so we can take $S=$ $\left\{\left(\begin{array}{c}2 \\ -4 \\ 6\end{array}\right),\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right)\right\}$.
(ii) T is not onto since its image is spanned by S, so does not contain all members of R^{3}.
(iii) No, since it can have three pivots at most, so there will be a free variable.

3 (i) T must be one-to-one. There are three pivots, so there can be no free variable.
(ii) T is not onto. In row-reduced echelon form A will have a row of zeroes and therefore $A \mathrm{x}$ cannot be onto.

4 (i) A is $\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$.
(ii) $A^{-1}=\frac{1}{2}\left(\begin{array}{ccc}-1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1\end{array}\right)$.
(iii) $\left(\begin{array}{l}x_{2}+x_{3} \\ x_{1}+x_{3} \\ x_{1}+x_{2}\end{array}\right)$.

5 (i) The standard matrix is $\left(\begin{array}{ccc}0 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & -1 & 0\end{array}\right)$. It is not invertible, for the determinant is 0 . This may be checked other ways as well.
(ii) By the Invertible Matrix Theorem, T can be neither one-to-one nor onto.

