Math 23 Diff Eq: Homework 2

due Wed Oct 10

Problems from Boyce \& DiPrima, given in order in which we covered material. (Remember to show your working/reasoning-answers without explanation will not receive a high score!)
2.4: 13 (hint: lecture Mon Sept 26), 20 (be precise with verbal description, and/or use a sketch), 22 ab (I really care about part b), $32{ }^{1}$.
2.6: 2, 4, 13 (hint try to get an explicit form for $y(x)$)
2.7: Numerical solution of $y^{\prime}=1+t-y$

Use the following code euler.m (get from website) or something similar, to get an approximate solution, given $y(0)=2$:
\% The Euler method, (c) L. Euler, 1768.
$f=@(t, y) 1+t-y ; \quad \%$ set up function $f(t, y)$
t0 $=0$; y0 $=2$; $\%$ IC
h $=0.1$; $\quad \%$ time step
T = 4; $\quad \%$ final (stopping) time
$\mathrm{N}=(\mathrm{T}-\mathrm{t} 0) / \mathrm{h}$; $\quad \%$ number of steps
clear ys ts $\quad \%$ empty the vectors
ys (1) = y0; $\quad \%$ first y, t given by IC
ts (1) = t0; $\quad \%$ (NB indexing starts at 1)
for $\mathrm{n}=1: \mathrm{N}$
ys $(n+1)=y s(n)+h * f(t s(n)$,ys(n)); \quad Euler update for y
ts $(n+1)=t s(n)+h ; \quad \%$ fill the time values too
end
Now you may want to study and adapt commands from the end of intro.m [Hint: keep a text file of your commands and paste into the Matlab window as needed].

1. Plot a graph of this numerical solution using + signs. Add to this plot, using lines, the exact solution (which you'll need to find algebraically, then add a line of code to compute!) Label your axes.
2. Plot the difference between the numerical and exact solutions. What magnitude is the worst error you see?
3. Repeat with h ten times smaller. Roughly by what factor do errors shrink? Using this, estimate how big N would need to be to get errors of less than 10^{-6}
2.3: 3 (connects to 2.4.32), 14 (this could represent a seasonal variation in birth rate, as happens with many animals. Use ode45 in Matlab, as in intro.m)
2.5: 3, 7 (introduces a new concept, note k in a is not same as k above. Hint for c: change variable), 22 (Hint: partial fractions)
[^0]
[^0]: ${ }^{1}$ For electrical engineers and physicists, this is an $R C$ low-pass filter driven by a single square voltage pulse! Why? Can you see what the value of $\tau=R C$ is?

