Math 23 Diff Eq: Homework 4 -revised

due Wed Oct 24

Sections 3.6 and 3.7 are the key parts to focus on this week, and might require a bit more time since each is a new technique - be sure to attack them early!
3.5: 3,14 ,

16,
21 (nice intuitive way to see why $t e^{r t}$ arises).
The next section suddenly involves more messy algebra (be prepared to keep track of lots of termsI suggest the bookkeeping trick from lecture - use abbreviations to help, e.g. s and c for $\sin \beta t$ and $\cos \beta t$). The results are worth it though!
3.6: 1 (is $e^{2 t}$ a homog soln?),

2 ,
3 (is e^{-t} a homog soln? Use this info),
4,
14.

The next technique is equally crucial, but mainly boild down to evaluating two integrals each time:
3.7: 3 (important to get the two methods to agree - isn't it amazing how the t^{2} term emerges from variation of parameters?),
5 (look in integral table),
11 (simplify as much as you can),
13 (don't forget you can remove multiples of y_{1} and y_{2}, the homog solns, in the answer, and careful chooseing lower limit t_{0}),
23 (beautiful result for response of driven harmonic oscillator).
3.8: 1,

7,
17.
3.9: 1,

17 (plot can be replaced by sketch but be sure to label some values, width/height of peak, etc)

