Math 23 Diff Eq: Homework 8

due Wed Nov 28 ...therefor a bit longer-I strongly suggest you do half before you leave for break

Note on integrals: these days it's professional to check your integrals symbolically, especially since you have a bunch to do to get Fourier coefficients. You could use Matlab's Symbolic Toolbox (separate licence but Dartmouth may have). Or here's example commands in (free) Maple to compute $\int_{-L}^{L} x \sin (n \pi x / L) d x$.

```
assume(n,integer);
f := x*sin(n*x*Pi/L);
A := int(f,x=-L..L);
```

Gives answer $2(-1)^{n+1} L^{2} / n \pi$. How great is that? Not required for our course-this is purely to help you out!
9.2: 3 (follow Example 1 ; this is another way of getting whether CW or CCW),

6 (use pplane7 or applet),
19 a (you may do b for fun but don't need to hand in).
10.1: 1,

5,
8 (the last two also review your 2nd-order linear ODE methods),
14,
16.
10.2: 8,

10 (both easy),
13 (sawtooth wave),
14 (welcome to your first Fourier series!),
19 (see Example in 10.3. For the plot you can use the Fourier applet on square-wave setting; you don't need to write Matlab code).
A. Let's derive the orthogonality properties of \sin and \cos on p. 578. First evaluate $\int_{-1 / 2}^{1 / 2} e^{2 \pi i k y} d y$ for k integer (consider $k=0$ too). Now write \sin and cos using Euler's formula. Then expand $\int_{-1 / 2}^{1 / 2} \cos (2 \pi n y) \cos (2 \pi m y) d y$ using Euler's formula, and treat the 4 terms using your first result. Finally, change variable $x=2 L y$. Repeat for the other two orthogonality integrals. This will be relatively painless.
10.3: 2 (Consider the Theorem when drawing the sketch. Watch out for the way series is written in back; you will find expressions such as $\cos n \pi=(-1)^{n}$ for integer n useful),
17.
10.4: 1,

6,
7 ,
27 (for c \& d, you don't need to plot. Instead just answer d by comparing triangle vs sawtooth waves on the applet, or comparing Fig. 10.2.4 and Fig. 10.4.3).

