Math 23 Diff Eq: Quiz 4 (Phase plane, BVPs, Fourier, heat eqn)

25 minutes, 25 points. Answer all questions, giving as much explanation as you have time for. No calculator needed; no algebra-capable ones allowed.

1. [5 points] Consider the ODE system

$$
\begin{aligned}
x^{\prime} & =-y+x y \\
y^{\prime} & =\sin x
\end{aligned}
$$

Linearize the system about the critical pont $(0,0)$, that is, give the A matrix. [Hint: what is linearization of \sin ?]

From the stability of the linearized system (being what?), what can you deduce about the stability of the nonlinear system?
2. [7 points] Solve the following boundary-value problems, stating if a solution exists and is unique. If it exists, sketch it.
(a) $u^{\prime \prime}+u=0, u(0)=1, u(\pi)=0$.
(b) $u^{\prime \prime}+u=0, u^{\prime}(0)=0, u^{\prime}(\pi)=0$.
3. [6 points] Calculate the coefficients in the Fourier sine series for the function $f(x)=1 / 2$ in the interval $0<x<\pi$. Try to simplify your answer so that it doesn't involve trig functions.

Write out the first 3 terms of the series here: $f(x)=$
4. [7 points] a) A rod of length π has both ends fixed to temperature zero. The temperature is initially 50 in $0<x<\pi$. Write the formula for the resulting temperature $u(x, t)$ as a funciton of space and time.
b) Suppose the right end were instead held at temperature 100π, the left end still at zero, and the initial temperature was instead $u(x, 0)=50+100 x$. Write down the solution [Hint you can reuse the above results]:

