
MATH 23 EXAM 1 REVIEW PROBLEMS

Problem 1. A spherical raindrop evaporates at a rate proportional to its surface area.
Write a differential equation for the volume of the raindrop as a function of time.

Solution. Let V(t) and S(t) be the volume and surface area, respectively, of the raindrop
at time t. Then

V(t) =
4
3
πr(t)3 S(t) = 4πr(t)2

where r(t) is the radius of the drop at time t. Since the rate of evaporation is proportional
to the surface area, then

dV
dt

= αS

for some constantα. We now express S in terms of V. Observe that

S3/2 = (4πr2)3/2 = 8π3/2r3

so
S3/2

V
=

8π3/2r3

4
3πr3

= 6π1/2 .

Then
S3/2 = 6π1/2V =⇒ S = 62/3π1/3V2/3 = (36π)1/3V2/3

so
dV
dt

= αS = α(36π)1/3V2/3 .

(You are not required to solve this equation in this problem, but you can using separation
of variables, which gives

V = (α(36π)1/3t + V0
1/3)3

where V0 is the initial volume.)

Problem 2. For large, rapidly falling objects, the drag force is approximately proportional
to the square of the velocity.

(a) Write a differential equation for the velocity of a falling object of mass m if the
magnitude of the drag force is proportional to the square of the velocity and its
direction is opposite to that of the velocity.

(b) Determine the limiting velocity after a long time.
(c) If m = 10 kg, find the drag coefficient so that the limiting velocity is 49 m/s.
(d) Using the data in part (c), draw a direction field for the differential equation.

Solution. (a) We orient our axes so that down is the positive direction. Then the two
forces acting on the object are the force due to gravity, which is mg (where g ≈
9.81m/s2 is the acceleration due to gravity) and the force due to drag, which is
−kv for some positive constant k. By Newton’s second law of motion, then

ma = mv′ = mg− kv2
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where a is the object’s acceleration. Thus our equation can be written

v′ = g− (k/m)v2 .

(b) We seek to find the equilibrium solution, i.e., a function v(t) that makes v′(t) iden-
tically zero. We find

0 = v′ = g− (k/m)v2 =⇒ (k/m)v2 = g =⇒ v2 =
mg
k

=⇒ v =

√
mg
k

.

Thus after a long time, we expect the object to have velocity
√

mg/k.
(c)

49 =
√

10g/k =⇒ 492k = 10g =⇒ k =
10g

2401
≈ 98.1

2401
≈ 0.0409 .

(d)

Problem 3. According to Newton’s law of cooling, the temperature u(t) of an object
satisfies the differential equation

du
dt

= −k(u− T)

where T is the constant ambient temperature and k is a positive constant. Suppose that
the initial temperature of the object is u(0) = u0.

(a) Find the temperature of the object at any time t.
(b) Let τ be the time at which the initial temperature difference u0 − T has been re-

duced by half. Find the relation between k and τ .

Solution. (a) Separating variables, we have

du
dt

= −k(u− T) =⇒ ln |u− T| =
∫ du

u− T
= −

∫
k dt = −kt + C0 .
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Exponentiating, then

u− T = Cekt =⇒ u = T + Ce−kt .

The initial condition implies

u0 = u(0) = T + C =⇒ C = u0 − T

which gives a final answer of

u = T + (u0 − T)e−kt

(b) By the definition of τ , we have

1
2
(u0 − T) = u(τ)− T = (u0 − T)e−kτ =⇒ 1

2
= e−kτ =⇒ ekτ = 2 =⇒ kτ = ln(2) .

Problem 4. Consider an electric circuit containing a capacitor, resistor, and battery; see
the figure below. The charge Q(t) on the capacitor satisfies the equation

R
dQ
dt

+
Q
C

= V ,

where R is the resistance, C is the capacitance, and V is the constant voltage supplied by
the battery.

(a) If Q(0) = 0, find Q(t) at any time t, and sketch the graph of Q versus r.
(b) Find the limiting value QL that Q(t) approaches after a long time.
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(b) Let τ be the time at which the initial temperature difference u0 − T has been reduced
by half. Find the relation between k and τ.

16. Suppose that a building loses heat in accordance with Newton’s law of cooling (see Problem
15) and that the rate constant k has the value 0.15 h−1.Assume that the interior temperature
is 70◦F when the heating system fails. If the external temperature is 10◦F, how long will it
take for the interior temperature to fall to 32◦F?

17. Consider an electric circuit containing a capacitor, resistor, and battery; see Figure 1.2.3.
The charge Q(t) on the capacitor satisfies the equation5

R
dQ
dt

+ Q
C

= V ,

where R is the resistance, C is the capacitance, and V is the constant voltage supplied by
the battery.
(a) If Q(0) = 0, find Q(t) at any time t, and sketch the graph of Q versus t.
(b) Find the limiting value QL that Q(t) approaches after a long time.
(c) Suppose that Q(t1) = QL and that at time t = t1 the battery is removed and the circuit
is closed again. Find Q(t) for t > t1 and sketch its graph.

V

R

C
FIGURE 1.2.3 The electric circuit of Problem 17.

18. A pond containing 1,000,000 gal of water is initially free of a certain undesirable chemical
(see Problem 21 of Section 1.1). Water containing 0.01 g/gal of the chemical flows into the
pond at a rate of 300 gal/h, and water also flows out of the pond at the same rate. Assume
that the chemical is uniformly distributed throughout the pond.
(a) Let Q(t) be the amount of the chemical in the pond at time t. Write down an initial
value problem for Q(t).
(b) Solve the problem in part (a) for Q(t). How much chemical is in the pond after 1 year?
(c) At the end of 1 year the source of the chemical in the pond is removed; thereafter
pure water flows into the pond, and the mixture flows out at the same rate as before. Write
down the initial value problem that describes this new situation.
(d) Solve the initial value problem in part (c). How much chemical remains in the pond
after 1 additional year (2 years from the beginning of the problem)?
(e) How long does it take for Q(t) to be reduced to 10 g?
(f) Plot Q(t) versus t for 3 years.

19. Your swimming pool containing 60,000 gal of water has been contaminated by 5 kg of
a nontoxic dye that leaves a swimmer’s skin an unattractive green. The pool’s filtering
system can take water from the pool, remove the dye, and return the water to the pool at
a flow rate of 200 gal/min.

5This equation results from Kirchhoff’s laws, which are discussed in Section 3.7.

Solution. (a) Separating variables, we have

dQ
dt

=
1
R

(
V − Q

C

)
=

1
RC

(CV −Q)

=⇒ − ln |CV −Q| =
∫ dQ

CV −Q
=
∫ 1

C
dt =

1
RC

t + C0 .

Exponentiating both sides yields

CV −Q = C1e−
1

RC t =⇒ Q = CV − C1e−
1

RC t .

The initial condition implies

0 = Q(0) = CV − C1 =⇒ C1 = CV

so we get a final answer of

Q(t) = CV − CVe−
1

RC t = CV(1− e−
1

RC t)
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(b) Setting dQ/dt = 0, we find

0 = R · 0 = V − QL

C
=⇒ QL = CV

where QL is the limiting value.

Problem 5. Find the solution to the initial value problem

y′ + 2y = te−2t, y(1) = 0 .

Solution. The integrating factor is µ(t) = e2t. Multiplying both sides of the equation by µ,
we have

d
dt
[e2ty] = t .

Integrating both sides of the equation results in the general solution y(t) = (1/2)t2e−2t +
ce−2t. The initial condition implies that (1/2)e−2 + ce−2 = 0, hence c = −1/2, so the
solution of the IVP is

y(t) =
1
2
(t2 − 1)e−2t .

Problem 6. Consider the initial value problem

y′ +
1
2

y = 2 cos(t), y(0) = −1 .

Find the coordinates of the first local maximum point of the solution for t > 0.

Solution. The integrating factor is

µ(t) = e
∫
(1/2)dt = et/2 .

Therefore the general solution is

y(t) =
1
5
(4 cos(t) + 8 sin(t)) + ce−t/2 .

The initial condition gives a specific solution

y(t) =
1
5
(4 cos(t) + 8 sin(t)− 9e−t/2) .

Differentiating, we find

y′(t) =
1
5
(−4 sin(t) + 8 cos(t) + (9/2)e−t/2

y′′(t) =
1
5
(−4 cos(t)− 8 sin(t)− (9/4)e−t/2 .

Setting y′(t) = 0, the first critical value is t1 ≈ 1.3643. Since y′′(t1) < 0, this is a local
maximum with approximate coordinates (1.3643, 0.82008).

Problem 7. Consider the initial value problem

y′ − 3
2

y = 3t + 2et, y(0) = y0 .
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Find the value of y0 that separates solutions that grow positively as t → ∞ from those
that grow negatively. How does the solution that corresponds to this critical value of y0
behave as t→ ∞?

Solution. The integrating factor is µ(t) = e−3t/2. Multiplying through, we have
d
dt
[e−3t/2y] = 3te−3t/2 + 2e−t/2 .

Integrating, the general solution is

y(t) = −2t− 4/3− 4et + ce3t/2 .

The initial condition implies

y(t) = −2t− 4/3− 4et + (y0 + 16/3)e3t/2.

Now, as t → ∞ the (y0 + 16/3)e3t/2 term will dominate, hence its sign will determine
whether the solution grows positively or negatively. Thus the critical value of the initial
condition is y0 = −16/3. The corresponding solution

y(t) = −2t− 4/3− 4et

decreases without bound.

Problem 8. Consider the initial value problem

y′ =
x(x2 + 1)

4y3 , y(0) = − 1√
2

.

(a) Solve the IVP.
(b) Determine the interval on which the solution is valid.

Solution. (a) Rewriting the differential equation as 4y3dy = x(x2 + 1)dx, integration
yields

y4 =
1
4
(x2 + 1)2 + c .

The initial condition implies c = 0, which gives an implicit solution (x2 + 1)2 −
4y4 = 0. The explicit form is then

y(x) = −
√

x2 + 1
2

where we have chosen the sign so that y(0) = −1/
√

2.
(b) Since x2 + 1 ≥ 1 for all x, then the solution is valid for all x, so (−∞, ∞) is the

interval of validity.

Problem 9. Consider the initial value problem

y′ =
ty(4− y)

1 + t
, y(0) = y0 > 0 .

(a) Determine how the solution behaves as t→ ∞.
(b) If y0 = 2, find the approximate time T at which the solution first reaches the value

3.99.
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Solution. (a) Separating variables, we have

dy
y(4− y)

=
t

1 + t
dt .

The partial fraction decomposition of the LHS is

1
y(4− y)

=
1/4

y
− 1/4

y− 4

so we have

ln
∣∣∣∣ y

y− 4

∣∣∣∣ = ln |y| − ln |y− 4| =
∫ (1

y
− 1

y− 4

)
dy = 4

∫ t
1 + t

dt = 4t− 4 ln |1 + t|+ c .

Exponentiating yields

y
y− 4

= c1
e4t

(1 + t)4 .

We solve for y:

y = (y− 4)c1
e4t

(1 + t)4 = yc1
e4t

(1 + t)4 − 4c1
e4t

(1 + t)4

=⇒ y
(

1− c1
e4t

(1 + t)4

)
= −4c1

e4t

(1 + t)4

=⇒ y = −4c1

e4t

(1+t)4

1− c1
e4t

(1+t)4

=
−4c1e4t

(1 + t)4 − c1e4t =
4c1e4t

c1e4t − (1 + t)4 .

Thus as t→ ∞,

y(t) =
4c1e4t

c1e4t − (1 + t)4 =
4

1− (1+t)4

c1e4t

→ 4
1− 0

= 4 .

(b) The initial condition y(0) = 2 implies

2 = y(0) =
4c1

c1 − 1
=⇒ 2c1 − 2 = 4c1 =⇒ −2 = 2c1 =⇒ c1 = −1

so

y(t) =
−4e4t

−e4t − (1 + t)4 =
4e4t

e4t + (1 + t)4 .

Using a computer, we find the numerical answer to

3.99 = y(t) =
4e4t

e4t + (1 + t)4

is t ≈ 2.84367.

Problem 10. Using a theorem proved in class, determine an interval on which the solution
of the following initial value problem is guaranteed to exist. Be sure to state how you are
using the theorem.

(ln(t))y′ + y = cot(t), y(2) = 3
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Solution. Rewriting the equation in standard form, we have

y′ +
1

ln(t)
y =

cos(t)
sin(t)

.

Since ln(1) = 0 and sin(t) = 0 for integer multiples of π , then the coefficient functions
are discontinuous there. The interval containing the initial value t0 = 2 is (1, π), which is
the desired interval.

Problem 11. State where in the t, y-plane the hypotheses of Theorem 2.4.2 are satisfied for
the following ODE.

dy
dt

=
(cot(t))y

1 + y
.

Solution. The function f (t, y) is discontinuous along the lines t = ±kπ for k = 0, 1, 2, . . .
and y = −1. The partial derivative

fy =
cot(t)
(1 + y)2

has the same discontinuities. Thus the hypotheses are verified for all points in the t, y-
plane not mentioned above.

Problem 12. Heat transfer from a body to its surrounds by radiation, based on the Stefan-
Boltzmann law, is described by the differential equation

du
dt

= −α(u4 − T4) ,

where u(t) is the absolute temperature of the body at time t, T is the absolute temperature
of the surroundings, andα is a constant. However if u is much larger than T, the solutions
to the above equation are well approximated by solutions of the simpler equation

du
dt

= −αu4 . (1)

Suppose that a body with initial temperature 2000 K is surrounded by a medium with

temperature 300 K and thatα = 2 · 10−12 1
K3s

.

(a) Determine the temperature of the body at any time t by solving (1).
(b) Describe the solution’s behavior as t→ ∞. Does this behavior make sense?

Solution. The equation is separable and has implicit solution

u3 =
u3

0

3αu3
0t + 1

.

With the given values, it follows that

u(t) =
2000

3
√

6t
125 + 1

.
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(a) As t → ∞, we see that u(t) → 0. This doesn’t make sense: we expect the body’s
temperature to approach the ambient temperature of 300 K. This is because we
didn’t use the true Stefan-Boltzmann law

du
dt

= −α(u4 − T4) .

Problem 13. In this problem, we will attempt to find the curve along which a particle will
slide without friction in the minimum time from a given point P to another point Q that
is lower than P.

It is convenient to take the upper point P as the origin, and to orient the axes as shown
below. The lower point Q has coordinates (x0, y0). One can show that the desired curve
is given by a function y(t) satisfying the differential equation

(1 + (y′)2)y = k2

where k2 is some positive constant.
(a) Solve the above equation for y′. Why is it necessary to choose the positive square

root?
(b) Introduce the new variable t given by the equation

y = k2 sin2(t) .

Show that the equation found in part (a) then takes the form

2k2 sin2(t) dt = dx . (2)

(c) Letting θ = 2t, show that the solution of (2) for which x = 0 when y = 0 is given
by

x(θ) =
k2(θ− sinθ)

2
, y(θ) =

k2(1− cosθ)
2

.

(The graph of the equations (x(θ), y(θ)) is called a cycloid.)
(d) If we make a proper choice of the constant k, then the cycloid also passes through

the point (x0, y0) and is the solution of to the problem described at the beginning
of the exercise. Find k if x0 = 1 and y0 = 2.
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Correct solutions were found by Johann Bernoulli and his brother Jakob Bernoulli and
by Isaac Newton, Gottfried Leibniz, and the Marquis de L’Hôpital. The brachistochrone
problem is important in the development of mathematics as one of the forerunners of the
calculus of variations.

In solving this problem, it is convenient to take the origin as the upper point P and to
orient the axes as shown in Figure 2.3.6. The lower point Q has coordinates (x0, y0). It is
then possible to show that the curve of minimum time is given by a function y = φ(x) that
satisfies the differential equation

(1 + y′ 2)y = k2, (i)

where k2 is a certain positive constant to be determined later.
(a) Solve Eq. (i) for y′. Why is it necessary to choose the positive square root?
(b) Introduce the new variable t by the relation

y = k2 sin2 t. (ii)

Show that the equation found in part (a) then takes the form

2k2 sin2 t dt = dx. (iii)

(c) Letting θ = 2t, show that the solution of Eq. (iii) for which x = 0 when y = 0 is given by

x = k2(θ − sin θ)/2, y = k2(1 − cos θ)/2. (iv)

Equations (iv) are parametric equations of the solution of Eq. (i) that passes through
(0, 0). The graph of Eqs. (iv) is called a cycloid.
(d) If we make a proper choice of the constant k, then the cycloid also passes through the
point (x0, y0)and is the solution of the brachistochrone problem. Find k if x0 = 1 and y0 = 2.

xP

y

Q(x0, y0)

FIGURE 2.3.6 The brachistochrone.

2.4 Differences Between Linear and Nonlinear Equations
Up to now, we have been primarily concerned with showing that first order differ-
ential equations can be used to investigate many different kinds of problems in the
natural sciences, and with presenting methods of solving such equations if they are
either linear or separable. Now it is time to turn our attention to some more general

Solution. (a) Solving the equation for y′, we find

y′ =

√
k2

y
− 1 =

√
k2 − y

y
.
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We choose the positive root because of how we have oriented our axes: y is a
nonnegative, increasing function of x.

(b) Letting y = k2 sin2(t), then dy = 2k2 sin(t) cos(t) dt. Note that

k2 − y
y

=
k2 − k2 sin2(t)

k2 sin2(t)
=

cos2(t)
sin2(t)

.

Substituting these two expressions into the result of part (a), we have

cos(t)
sin(t)

=

√
k2 − y

y
=

dy
dx

=
dy = 2k2 sin(t) cos(t) dt

dx

hence
2k2 sin2(t) dt = dx .

(c) Setting θ = 2t, then dθ = 2 dt, so we obtain k2 sin2(θ/2) dθ = dx. Integrating both
sides and noting that t = θ = 0 corresponds to the origin, we find

x(θ) =
k2(θ− sin(θ))

2
.

To find y, we recall the expression from part (b):

y = k2 sin2(t) = k2 1− cos(2t)
2

=
k2(1− cos(θ))

2
.

by the half-angle formula.
(d) Observe that

y
x
=

1− cos(θ)
θ− sin(θ)

.

Setting x = 1, y = 2, we find the approximate solution of

2 =
1− cos(θ)
θ− sin(θ)

is θ ≈ 1.401. Substituting this into the equation for x(θ) and solving for k yields
an approximate solution of k ≈ 2.193.

Problem 14. Consider the autonomous ODE below. Let f (y) = dy/dt.
dy
dt

= y2(4− y2) −∞ < y0 < ∞
(a) Sketch the graph of f (y) vs. y by hand (i.e., without using a graphing utility, such

as a graphing calculator).
(b) Determine the equilibria, and classify each one as stable, unstable, or semistable.
(c) Draw the phase line, and sketch several graphs of solutions in the t, y-plane.

Solution. (a) Since f (y) = y2(2− y)(2 + y) = 4y2 − y4, then f has zeroes at 0,±2. We
compute

f ′(y) = 8y− 4y3 = 4y(2− y2)

f ′′(y) = 8− 12y2 .
9



Choosing test points, we have the following sign chart for f ′(y)

−
√

2 0 √
2

+ − + −
f ′(y)

and the following sign chart for f ′′(y).

−
√

2/3
√

2/3

− + −
f ′′(y)

With this information about where the f is increasing and decreasing and its con-
cavity, we can make a reasonably accurate plot of f .

−2 −1 1 2

−2

−1

1

2

3

4

y

f (y)

(b) As we remarked above, f (y) = dy/dt has zeroes at y = −2, 0, 2 which are the
equilibria. From the phase line sketch, we see that y = −2 is unstable, y = 0 is
semistable and y = 2 is stable.

(c)
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Problem 15. Consider the autonomous ODE below. Let f (y) = dy/dt.

dy
dt

= y2(1− y)2 −∞ < y0 < ∞
(a) Sketch the graph of f (y) vs. y by hand (i.e., without using a graphing utility, such

as a graphing calculator).
(b) Determine the equilibria, and classify each one as stable, unstable, or semistable.
(c) Draw the phase line, and sketch several graphs of solutions in the t, y-plane.

Solution. (a) Using the same steps as outlined in the previous problem, we construct
the following plot.

−0.5 0.5 1 1.5
y

f (y) = dy/dt

(b) The equilibria y = 0 and y = 1 are both semistable, as can be seen from the phase
line.
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Problem 16. Determine whether the following equation is exact. If it is exact, find the
solution.

(2x + 3) dx + (2y− 2) dy = 0 .

Solution. Since My = 0 = Nx, then the equation is exact. Then there is some function
ψ(x, y) such that ψx = M and ψy = N. Then

ψ =
∫
(2x + 3) dx = x2 + 3x + C(y)

so ψy = C′(y). Comparing this with N, we find C′(y) = N = 2y− 2, so C(y) = y2 −
2y + C0. Taking C0 = 0, then ψ = x2 + 3x + y2 − 2y, so the equation can be written as

d
dx
ψ =

d
dx

(x2 + 3x + y2 − 2y) = 0

which has solution x2 + 3x + y2 − 2y = c.

Problem 17. Find an integrating factor and solve the following equation.

y + (2x− yey)y′ = 0 .

Solution. My = 1 and Nx = 2, so we take as integrating factor

µ(y) = exp
(∫ Nx −My

M
dy
)
= exp

(∫ dy
y

)
= eln(y) = y .

Multiplying through by µ, we obtain

y2 dx + (2xy− y2ey) dy = 0 .

Redefining M and N as the coefficient functions of this new equation, we have ψx = M
and ψy = N. Then

ψ =
∫

y2 dx = xy2 + C(y) =⇒ ψy = 2xy + C′(y)

Since ψy = N = 2xy− y2ey, we find C′(y) = −y2ey. Using integration by parts, we find
C(y) = −ey(y2 − 2y + 2), so

ψ = xy2 − ey(y2 − 2y + 2)

and our equation has solution

xy2 − ey(y2 − 2y + 2) = c .

Problem 18. Solve the following equation.

(3x2y + 2xy + y3) dx + (x2 + y2) dy = 0 .

Solution. Computing the relevant partials, we find

My = 3x2 + 2x + 3y2 Nx = 2x .
12



Then
My − Nx

N
= 3 is a function of x alone (a constant, actually), so we can compute an

integrating factor as follows.
µ(x) = e

∫
3 dx = e3x .

Multiplying through by µ(x), we have
M︷ ︸︸ ︷

(3x2ye3x + 2xye3x + y3e3x) dx +

N︷ ︸︸ ︷
(x2e3x + y2e3x) dy = 0

where we have redefined M and N. This equation is exact, so ψy = N for some function
ψ(x, y). We determine ψ by integrating N with respect to y:

ψ =
∫

N dy =
∫
(x2e3x + y2e3x) dy = x2ye3x +

y3

3
e3x + C(x)

for some function C(x). We also know ψx = M, and taking the partial with respect to x
of our expression for ψ, we find

ψx = 2xe3xy + 3x2e3xy + y3e3x + C′(x) .

Comparing this with M, we see C′(x) = 0, so C(x) = C0 is constant. Taking C0 = 0, then
we have the implicit solution

x2ye3x +
y3

3
e3x = c .

Problem 19. Find the general solution of the following differential equation.

y′′ + 2y′ − 3y = 0

Solution. The characteristic equation is 0 = r2 + 2r− 3 = (r + 3)(r− 1), which has roots
r = −3, 1. Then the general solution is

y = c1e−3t + c2et .

Problem 20.
(a) Solve the following initial value problem.

6y′′ − 5y′ + y = 0, y(0) = 4, y′(0) = 0

(b) Describe the solution’s behavior as t→ ∞.

Solution. (a) The characteristic equation is

0 = 6r2 − 5r + 1 = 6r2 − 2r− 3r + 1 = 2r(3r− 1)− (3r− 1) = (2r− 1)(3r− 1)

which has roots r = 1/2, 1/3. Then the general solution is

y = c1et/2 + c2et/3 .

The initial conditions imply

4 = y(0) = c1 + c2

0 = y′(0) =
c1

2
+

c2

3
.
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Solving this system, we find c1 = −8, c2 = 12, which yields the solution to the IVP

y = −8et/2 + 12et/3 .

(b) Since the exponent on et/2 is larger, then y→ −∞ as t→ ∞.

Problem 21.
(a) Find the solution to the initial value problem

2y′′ − 3y′ + y = 0, y(0) = 2 y′(0) = 1/2 .

(b) Determine the maximum value of the solution.

Solution. (a) The characteristic equation is

0 = 2r2 − 3r + 1 = 2r2 − 2r− r + 1 = 2r(r− 1)− (r− 1) = (2r− 1)(r− 1)

which has roots 1/2, 1. Then the general solution is

y = c1et/2 + c2et .

The initial conditions imply

2 = y(0) = c1 + c2

1/2 = y′(0) = c1/2 + c2 .

Solving this system, we find c1 = 3 and c2 = −1, so the solution to the IVP is

y = 3et/2 − et .

(b) Setting y′ =
3
2

et/2 − et = 0, then

3
2

et/2 = et =⇒ 3
2
= et/2 =⇒ ln(3/2) = t/2 =⇒ t = 2 ln(3/2) .

Since y′′ =
3
4

et/2 − et and

y′′(2 ln(3/2)) =
3
4

3
2
− 9

4
=

9
8
− 9

4
= −9

8
< 0

this is a local maximum. Since this is the only critical value, then it is the global
maximum.

Problem 22. Find the Wronskian of the given pairs of functions.
(a) et sin(t), et cos(t)
(b) cos2(θ), 1 + cos(2θ)

Solution. (a)

W = det
(

et sin(t) et cos(t)
et(sin(t) + cos(t)) et(cos(t)− sin(t))

)
= e2t(sin(t) cos(t)− sin2(t))− e2t(cos(t) sin(t) + cos2(t))

= −e2t(sin2(t) + cos2(t)) = e−2t

14



(b) By the double-angle formula, we have

1 + cos(2θ) = 1 + cos2(θ)− sin2(θ) = 2 cos2(θ)

since 1− sin2(θ) = cos2(θ). Then

W =

(
cos2(θ) 2 cos2(θ)

2 cos(θ) sin(θ) 4 cos(θ) sin(θ)

)
= 4 cos3(θ) sin(θ)− 4 cos3(θ) sin(θ) = 0

Problem 23.
(a) Verify that y1(t) = 1 and y2(t) =

√
t are solutions to the differential equation

yy′′ + (y′)2 = 0

for t > 0.
(b) Show that y = c1 + c2

√
t is not, in general, a solution to the above equation.

(c) Explain why this does not contradict Theorem 3.2.2.

Solution. (a) The solution y1(t) = 1 trivially satisfies the equation since it yields 0 = 0.
We verify the second solution:

y2y′′2 + (y′2)
2 = t1/2 · −1

4
t−3/2 +

(
1
2

t−1/2
)2

= −1
4

t−1 +
1
4

t−1 = 0 .

(b) Let y = c1 + c2t1/2. Then

y′ =
c2

2
t−1/2

y′′ = − c2

4
t−3/2

so

yy′′ + (y′)2 = (c1 + c2t1/2) · − c2

4
t−3/2 +

( c2

2
t−1/2

)2

= − c1c2

4
t−3/2 −

c2
2

4
t−1 +

c2
2

4
t−1 = − c1c2

4
t−3/2

which is 0 if and only if c1 = 0 or c2 = 0.
(c) Since the differential equation is nonlinear, Theorem 3.2.2 does not apply.

Problem 24.
(a) Consider the differential equation

y′′ + 4y = 0 .

Verify that the functions y1 = cos(2t) and y2 = sin(2t) are solutions. Do they
form a fundamental set of solutions?

(b) Determine a fundamental set of solutions to the following differential equation.

y′′ + 4y′ + 3y = 0

15



Solution. (a) The characteristic equation is 0 = r2 + 4 which has roots r = ±2i. Then
we have solutions

y1(t) = e2it = cos(2t) + i sin(2t)

y2(t) = e−2it = cos(2t)− i sin(2t) .

Taking real and imaginary parts, we have solutions u(t) = cos(2t) and v(t) =
sin(2t).

The Wronskian

W = det
(

cos(2t) sin(2t)
−2 sin(2t) 2 cos(2t)

)
= 2 cos2(2t) + 2 sin2(2t) = 2

is not identically 0 (in fact, it is never 0), so we have found a fundamental set of
solutions.

(b) The characteristic equation is 0 = r2 + 4r + 3 = (r + 3)(r + 1) which has roots
r = −3,−1. Thus we have solutions y1 = e−3t, y2 = e−t. Since the Wronskian

W = det
(

e−3t e−t

−3e−3t −e−t

)
= −e−4t + 3e−4t = 2e−4t

is never 0, these form a fundamental set of solutions.

Problem 25. For each of the differential equations below, find the general solution.
(a) y′′ + 2y′ + 2y = 0
(b) y′′ + 2y′ − 8y = 0

Solution. (a) The characteristic equation is 0 = r2 + 2r + 2 which has solutions

r =
−2±

√
4− 8

2
=
−2± 2i

2
= −1± i .

Thus the general solution is

y = c1e−t cos(t) + c2e−t sin(t) .

(b) The characteristic equation is 0 = r2 + 2r − 8 = (r + 4)(r − 2) which has roots
r = −4, 2. Thus the general solution is

y = c1e−4t + c2e2t .

Problem 26. For each of the initial value problems below, find a solution and describe its
behavior as t→ ∞.

(a) y′′ + 4y = 0, y(0) = 0, y′(0) = 1
(b) y′′ + y′ + (5/4)y = 0, y(0) = 3, y′(0) = 1

Solution. (a) The characteristic equation is 0 = r2 + 4 which has roots ±2i. Thus the
general solution is

y = c1 cos(2t) + c2 sin(2t) .
We compute

y′ = −2c1 sin(2t) + 2c2 cos(2t) .
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The initial conditions imply

0 = y(0) = c1

1 = y′(0) = 2c2

so c1 = 0, c2 = 1/2. Thus the solution to the IVP is y =
1
2

sin(2t). This solution is

periodic with period π , and is bounded between −1/2 and 1/2.
(b) The characteristic equation is 0 = r2 + r + 5/4 which has roots

r =
−1±

√
1− 5

2
=
−1± 2i

2
= −1

2
± i .

Thus the general solution is

y = c1e−t/2 cos(t) + c2e−t/2 sin(t) .

Note that

y′ = −c1
1
2

e−t/2 cos(t)− c1e−t/2 sin(t)− c2
1
2

e−t/2 sin(t) + c2e−t/2 cos(t)

= e−t/2
((
− c1

2
+ c2

)
cos(t) +

(
−c1 −

c2

2

)
sin(t)

)
.

The initial conditions imply

3 = y(0) = c1

1 = y′(0) = − c1

2
+ c2

so 1 = −3/2 + c2, hence c2 = 5/2. Thus the solution to the IVP is

y = 3e−t/2 cos(t) +
5
2

e−t/2 sin(t) .

Because of the factors of e−t/2 in each term, the solution oscillates but with am-
plitude that decreases exponentially and approaches 0 as t→ ∞.
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