Math 23, Final
 June 12017

Name

\qquad (please print)

Instructor: Edgar Costa or Anne Gelb (please circle one)

Instructions

- Please print your name in the blank space above.
- Please circle your instructor.
- Please turn off cell phones or other electronic devices which may be disruptive.
- Present your work neatly and clearly. Justify your answers completely. Unless explicitly told otherwise, you will not receive full credit for insufficiently justified answers. Please box your answers, when appropriate.
- It is fine to leave your answer in a form such as $\ln (.02)$ or $\sqrt{239}$ or $(385)\left(13^{3}\right)$. However, if an expression can be easily simplified (such as $e^{\ln (.02)}$ or $\cos (\pi)$ or $(3-2)$), you should simplify it.
- This exam is closed book. You may not use notes, computing devices (calculators, computers, cell phones, etc.) or any other external resource. It is a violation of the honor code to give or receive help on this exam. However, you may ask the instructor for clarification on problems.
- Consider signing the FERPA waiver:

> FERPA waiver: By my signature I relinquish my FERPA rights in the following context: This exam paper may be returned en masse with others in the class and I acknowledge that I understand my score may be visible to others. If I choose not to relinquish my FERPA rights, I understand that I will have to present my student ID at my instructors office to retrieve my examination paper. FERPA waiver signature:

Honor statement: I have neither given nor received any help on this exam, and I attest that all of the answers are my own work.

Signature:

Grader's use only:

1. $/ 40$
2. \qquad /40
3. $\quad / 15$
4. \qquad
5.
6. \quad _ $/ 20$
7.
8.
9. $\quad / 20$

Total:
/200

1. [40 points] TRUE or FALSE? Please keep your justifications short. In some cases, drawing a figure might aid your justification.
(a) $c_{1}+c_{2} \sqrt{t}$ is a general solution to the differential equation $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=0$ for $t>0$.
(b) The solutions $y_{1}(x)=x^{2}$ and $y_{2}(x)=\frac{1}{x^{2}}$ form a fundamental set of solutions for the problem $x^{2} y^{\prime \prime}+x y^{\prime}-4 y=0$ on $(-\infty, \infty)$.
(c) The initial value problem $y^{\prime}=2 \sqrt{y}, y(0)=0$ has a unique solution.
(d) Consider the differential equation $X^{\prime}=A \cdot X$, where A is a $n \times n$ matrix. If all eigenvalues of A have their real part less than zero, then $0 \in \mathbb{R}^{n}$ is asymptotically stable.
(e) If y_{1} and y_{2} are two solutions of an nonhomogeneous equation $a y^{\prime \prime}+b y^{\prime}+c y=f(x)$, then their sum is a solution of the equation $a y^{\prime \prime}+b y^{\prime}+c y=0$
(f) Consider the differential equation $X^{\prime}=A \cdot X$, where A is a $n \times n$ matrix. If all eigenvalues of A have their real part less than or equal to zero, then $0 \in \mathbb{R}^{n}$ is stable.
(g) There is a solution to the ODE $y^{\prime \prime}-4 y^{\prime}+4 y=\cos (2 t)$ of the form $y_{p}(t)=A t \cos (2 t)+B t \sin (2 t)$ where A and B are nonzero constants.
(h) Consider the differential equation $X^{\prime}=A \cdot X$, where A is a $n \times n$ matrix. The only equilibrium solution is $X(t)=0 \in \mathbb{R}^{n}$.
2. [40 points] Consider the system:

$$
\left\{\begin{array}{l}
x^{\prime}=x+\alpha y \\
y^{\prime}=x+y
\end{array}\right.
$$

(a) Show that the critical point $(0,0)$ is a nodal source for all $0<\alpha<1$.
(b) Write the general solution for $0<\alpha<1$ and sketch the corresponding phase portrait.
(c) Classify the critical point $(0,0)$ for $\alpha=0$.
(d) Classify the critical point $(0,0)$ for $\alpha<0$.
3. [15 points] Solve the initial value problem

$$
y^{\prime \prime}+4 y^{\prime}+5 y=\delta(t-\pi)
$$

with $y(0)=0$ and $y^{\prime}(0)=2$.
4. [15 points] Find the general solution for $y^{\prime \prime}+4 y^{\prime}+4 y=t^{-2} e^{-2 t}$.
5. [20 points] Consider the initial value problem $y^{\prime}=-2 t y^{4}, y(0)=y_{0}$.
(a) Solve the initial value problem.
(b) Determine how the interval in which the solution exists depends on the initial value y_{0}.
6. [20 points] Consider the system $\begin{cases}x^{\prime} & =1+y^{4}-4 x^{2} \\ y^{\prime} & =8 x y .\end{cases}$
(a) Find the critical points and determine their stability.
(b) There is a nonconstant solution curve $\{(x(t), y(t))\}_{t \in \mathbb{R}} \subset \mathbb{R}^{2}$ which is bounded for all $t \in \mathbb{R}$. Describe the curve $\{(x(t), y(t))\}_{t \in \mathbb{R}} \subset \mathbb{R}^{2}$ in the phase plane.
7. [10 points] Sketch the phase portrait of the system

$$
\begin{aligned}
x^{\prime} & =\frac{2 y}{x^{2}+y^{2}+1} \\
y^{\prime} & =-\frac{2 x}{x^{2}+y^{2}+1} .
\end{aligned}
$$

8. [20 points]
(a) Solve the initial value problem

$$
\left\{\begin{array}{l}
x^{\prime}=x-y \\
y^{\prime}=2 x-y
\end{array} \quad x(0)=1, y(0)=2\right.
$$

(b) Solve the initial value problem

$$
\left\{\begin{array}{ll}
x^{\prime} & =x-y \\
y^{\prime} & =2 x-y \\
z^{\prime} & =y-\cos (t) z
\end{array} \quad x(0)=1, y(0)=2, z(0)=3\right.
$$

9. [20 points] Match the following system of differential equations with the vector fields.
(a) $\left\{\begin{array}{l}x^{\prime}=y \\ y^{\prime}=x^{3}-x\end{array} \square\right.$

(b) $\left\{\begin{array}{l}x^{\prime}=y(x-1) \\ y^{\prime}=x(x+1)(x-2)\end{array}\right.$
A:

C:

F

(c) $\left\{\begin{array}{l}x^{\prime}=x(6-2 y-4 x) \\ y^{\prime}=y(6-2 x-3 y)\end{array} \square\right.$
A:
(
C:

(d) $\left\{\begin{array}{l}x^{\prime}=x(1-2 y) \\ y^{\prime}=y(x-1)\end{array} \quad \square\right.$
A:
(
C:

B:

D

Table 1: Laplace Transform Table.

$f(t)$	$\mathcal{L}\{f(t)\}$
1	$\frac{1}{s}, s>0$
$e^{a t}$	$\frac{1}{s-a}, s>a$
t^{n}	$\frac{n!}{s^{n+1}}, s>0$
$\sin a t$	$\frac{a}{s^{2}+a^{2}}, s>0$
$\cos a t$	$\frac{s}{s^{2}+a^{2}}, s>0$
sinh $a t$	$\frac{s^{2}+a^{2}}{s^{2}-a^{2}}, s>\|a\|$
$\cosh a t$	$\frac{s}{s^{2}-a^{2}}, s>\|a\|$
$e^{a t} \sin b t$	$\frac{s^{2}-a_{b}^{2}}{(s-a)^{2}+b^{2}}, s>a$
$e^{a t} \cos b t$	$\frac{s-a}{(s-a)^{2}+b^{2}}, s>a$
$t^{n} e^{a t}$	$\frac{(s-a)^{2}+b^{2}}{(s+-)^{n+1}}, s>a$
$u_{c}(t)$	$\frac{e^{-c-a}}{s}{ }^{-(s-a)}, s>0$
$u_{c}(t) f(t-c)$	$e^{-c s} F(s)$
$\int_{0}^{t} f(t-\tau) g(\tau) d \tau$	$F(s) G(s)$
$\delta(t-c)$	$e^{-c s}$

Common integral formulas:

1. $\int \sin ^{2} u d u=\frac{1}{2} u-\frac{1}{4} \sin 2 u+C$
2. $\int \cos ^{2} u d u=\frac{1}{2} u+\frac{1}{4} \sin 2 u+C$
3. $\int u \cos u d u=\cos u+u \sin u+C$
4. $\int u \sin u d u=\sin u-u \cos u+C$
5. $\int e^{a u} \sin b u d u=\frac{e^{a u}}{a^{2}+b^{2}}(a \sin b u-b \cos b u)+C$
6. $\int e^{a u} \cos b u d u=\frac{e^{a u}}{a^{2}+b^{2}}(a \cos b u+b \sin b u)+C$
