Math 23, Final June 1 2017

Name _____ (please print)

Instructor: *Edgar Costa* or *Anne Gelb* (please circle one)

Instructions

- Please **print your name** in the blank space above.
- Please circle your instructor.
- Please turn off cell phones or other electronic devices which may be disruptive.
- Present your work neatly and clearly. **Justify your answers completely**. Unless explicitly told otherwise, you will not receive full credit for insufficiently justified answers. Please box your answers, when appropriate.
- It is fine to leave your answer in a form such as $\ln(.02)$ or $\sqrt{239}$ or $(385)(13^3)$. However, if an expression can be easily simplified (such as $e^{\ln(.02)}$ or $\cos(\pi)$ or (3-2)), you should simplify it.
- This exam is **closed book**. You may not use notes, computing devices (calculators, computers, cell phones, etc.) or any other external resource. It is a violation of the honor code to give or receive help on this exam. However, you may ask the instructor for clarification on problems.
- Consider signing the FERPA waiver:

FERPA waiver: By my signature I relinquish my FERPA rights in the following context: This exam paper may be returned en masse with others in the class and I acknowledge that I understand my score may be visible to others. If I choose not to relinquish my FERPA rights, I understand that I will have to present my student ID at my instructors office to retrieve my examination paper. FERPA waiver signature:

Honor statement: I have neither given nor received any help on this exam, and I attest that all of the answers are my own work.

Signature: _

Grader's use only:

Total: _____ /200

- 1. [40 points] TRUE or FALSE? Please keep your justifications short. In some cases, drawing a figure might aid your justification.
 - (a) $c_1 + c_2\sqrt{t}$ is a general solution to the differential equation $yy'' + (y')^2 = 0$ for t > 0.
 - (b) The solutions $y_1(x) = x^2$ and $y_2(x) = \frac{1}{x^2}$ form a fundamental set of solutions for the problem $x^2y'' + xy' 4y = 0$ on $(-\infty, \infty)$.
 - (c) The initial value problem $y' = 2\sqrt{y}$, y(0) = 0 has a unique solution.
 - (d) Consider the differential equation $X' = A \cdot X$, where A is a $n \times n$ matrix. If all eigenvalues of A have their real part less than zero, then $0 \in \mathbb{R}^n$ is asymptotically stable.
 - (e) If y_1 and y_2 are two solutions of an nonhomogeneous equation ay'' + by' + cy = f(x), then their sum is a solution of the equation ay'' + by' + cy = 0
 - (f) Consider the differential equation $X' = A \cdot X$, where A is a $n \times n$ matrix. If all eigenvalues of A have their real part less than or equal to zero, then $0 \in \mathbb{R}^n$ is stable.
 - (g) There is a solution to the ODE $y'' 4y' + 4y = \cos(2t)$ of the form $y_p(t) = At\cos(2t) + Bt\sin(2t)$ where A and B are nonzero constants.
 - (h) Consider the differential equation $X' = A \cdot X$, where A is a $n \times n$ matrix. The only equilibrium solution is $X(t) = 0 \in \mathbb{R}^n$.

2. [40 points] Consider the system:

$$\begin{cases} x' = x + \alpha y \\ y' = x + y \end{cases}$$

- (a) Show that the critical point (0,0) is a nodal source for all $0 < \alpha < 1$.
- (b) Write the general solution for $0 < \alpha < 1$ and sketch the corresponding phase portrait.
- (c) Classify the critical point (0,0) for $\alpha = 0$.
- (d) Classify the critical point (0,0) for $\alpha < 0$.

3. $[15\ points]$ Solve the initial value problem

$$y'' + 4y' + 5y = \delta(t - \pi),$$

with y(0) = 0 and y'(0) = 2.

4. [15 points] Find the general solution for $y'' + 4y' + 4y = t^{-2}e^{-2t}$.

- 5. [20 points] Consider the initial value problem $y' = -2ty^4, y(0) = y_0$.
 - (a) Solve the initial value problem.
 - (b) Determine how the interval in which the solution exists depends on the initial value y_0 .

6. [20 points] Consider the system $\begin{cases} x' = 1 + y^4 - 4x^2 \\ y' = 8xy. \end{cases}$

- (a) Find the critical points and determine their stability.
- (b) There is a nonconstant solution curve $\{(x(t), y(t))\}_{t \in \mathbb{R}} \subset \mathbb{R}^2$ which is bounded for all $t \in \mathbb{R}$. Describe the curve $\{(x(t), y(t))\}_{t \in \mathbb{R}} \subset \mathbb{R}^2$ in the phase plane.

7. $[10 \ points]$ Sketch the phase portrait of the system

$$x' = \frac{2y}{x^2 + y^2 + 1}$$
$$y' = -\frac{2x}{x^2 + y^2 + 1}.$$

- 8. [20 points]
 - (a) Solve the initial value problem

$$\begin{cases} x' = x - y \\ y' = 2x - y \end{cases} \quad x(0) = 1, \ y(0) = 2 \end{cases}$$

(b) Solve the initial value problem

$$\begin{cases} x' = x - y \\ y' = 2x - y \\ z' = y - \cos(t)z \end{cases} \quad x(0) = 1, \ y(0) = 2, \ z(0) = 3.$$

9. [20 points] Match the following system of differential equations with the vector fields.

f(t)	$\mathcal{L}{f(t)}$
1	$\frac{1}{s}, s > 0$
e^{at}	$\frac{1}{s-a}, s > a$
t^n	$\frac{n!}{s^{n+1}}, s > 0$
$\sin at$	$\frac{a}{s^2+a^2}, s > 0$
$\cos at$	$\frac{s}{s^2+a^2}, s > 0$
$\sinh at$	$\frac{a}{s^2-a^2}, s > a $
$\cosh at$	$\frac{s}{s^2 - a^2}, s > a $
$e^{at}\sin bt$	$\frac{b}{(s-a)^2+b^2}, s > a$
$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}, s > a$
$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}, s > a$
$u_c(t)$	$\frac{e^{-cs}}{s}, s > 0$
$u_c(t)f(t-c)$	$e^{-cs}F(s)$
$\int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)
$\delta(t-c)$	e^{-cs}

Table 1: Laplace Transform Table.

Common integral formulas:

- 1. $\int \sin^2 u \, du = \frac{1}{2}u \frac{1}{4}\sin 2u + C$
- 2. $\int \cos^2 u du = \frac{1}{2}u + \frac{1}{4}\sin 2u + C$
- 3. $\int u \cos u \, du = \cos u + u \sin u + C$
- 4. $\int u \sin u \, du = \sin u u \cos u + C$
- 5. $\int e^{au} \sin bu du = \frac{e^{au}}{a^2 + b^2} (a \sin bu b \cos bu) + C$
- 6. $\int e^{au} \cos bu du = \frac{e^{au}}{a^2 + b^2} (a \cos bu + b \sin bu) + C$