Some useful Taylor series

$$
\begin{aligned}
& \frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots=\sum_{n=0}^{\infty} x^{n} \\
& e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
& \cos x=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \\
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!} \\
& \frac{1}{x}=\frac{1}{1-(1-x)}=1+(1-x)+(1-x)^{2}+\cdots=\sum_{n=0}^{\infty}(1-x)^{n} \quad \text { for } 0<x<2 \quad(\text { so } R=1) \\
& \ln x=\int \frac{1}{x} \mathrm{~d} x=C+x-\frac{(1-x)^{2}}{2}-\frac{(1-x)^{3}}{3}-\cdots= \\
& \text { (plug in } x=1 \text { to find } C=-1)=\sum_{n=0}^{\infty}(-1)^{n+1}(x-1)^{n} \\
& \tan ^{-1} x=\int \frac{1}{1+x^{2}} \mathrm{~d} x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1} \\
& \text { for }-1<x<1 \quad(\text { so } R=1) \\
& \text { (same strategy as for } \ln x \text {) } \\
& \text { for }-1<x<1 \quad \text { (so } R=1 \text {) } \\
& R=\infty \\
& R=\infty \\
& R=\infty \\
& \text { for } 0<x<2 \quad \text { (so } R=1 \text {) } \\
& \text { for }-1<x<1 \quad(\text { so } R=1)
\end{aligned}
$$

