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The Laplace Transform

{
f : [0,+∞) −→ R

t 7−→ f(t)

}
7−→

{
L(f) : I −→ R

s 7−→ L(f)(s)

}
IVP in t-domain 7−→ algebraic equations in the s-domain

Definition

L(f)(s) :=
∫ +∞

0
e−stf(t) dt (if the integral converges)

Note: L is a linear operator!In other words, if L(f1)(s) and L(f2)(s) exist, then

L(c1f1 + c2f2)(s) = c1L(f1)(s) + c2L(f2)(s)
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Some examples

• L(1) =
∫ +∞

0
e−st dt = − lim

A→+∞

[
e−st
s

]A
0
=
1
s , s > 0

• L(eat) =
∫ +∞

0
eate−st dt =

∫ +∞

0
e(a−s)t dt = 1

s− a , s > a

In particular, L(e0t) = 1
s , s > 0

Theorem 6.1.2

1. If f is piecewise continuous on [0,A], for any A > 0
2. If |f(t)| ≤ Keat for t > M, with K,M,a ∈ R and K,M > 0.

Then the Laplace transform L(f)(s) exists for s > a.
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More examples

• L(cos(βt)) =?

L(sin(βt)) =?

We could use the definition, but what would require integrating by parts
twice per function!

• Let’s use complex analysis!

e(α+iβ)t = eαt(cos(βt) + i sin(βt))∣∣∣e(α+iβ)t∣∣∣ = eαt
√
cos(βt)2 + sin(βt)2 = eαt

L
(
e(α+iβ)t

)
=

1
s− (α+ βi) , s > α

Exercise
Deduce L

(
eαt cos(βt)

)
and L

(
eαt sin(βt)

)
with α, β ∈ R.
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Main Theorem

Theorem 6.2.1

1. If f is continuous and f′ is piecewise continuous on [0,A], for any A > 0
2. If |f(t)| ≤ Keat for t > M, with K,M,a ∈ R and K,M > 0.

Then the Laplace transform L (f ′) (s) exists for s > a and

L
(
f ′
)
(s) = sL(f)(s)− f(0)

Proof sketch: If f and f′ are continuous on [0,A], then∫ A

0
e−stf′(t) dt =

[
e−stf(t)

]A
0 + s

∫ A

0
e−stf(t) dt
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Main Theorem 2.0

Corollary 6.2.2

1. If f, f′, …, f(n−1) are continuous on [0,A], for any A > 0
2. If |f(i)(t)| ≤ Keat for t > M and i = 0, . . . ,n− 1, with K,M,a ∈ R and K,M > 0.

Then the Laplace transform L
(
f(n)

)
(s) exists for s > a and

L
(
f(n)

)
(s) = snL(f)(s)− sn−1f(0)− · · · − sf(n−2)(0)− f(n−1)(0)

Upshot: We can write L(f(n))(s) in term of L(f)(s) and the values of f(i)(0).
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Back to ODEs

L
(
f(n)

)
(s) = snL(f)(s)− sn−1f(0)− · · · − sf(n−2)(0)− f(n−1)(0)

Exercise 6.2.11
Use the Laplace transform to solve

y′′ − y′ − 6y = 0; y(0) = 1, y′(0) = −1

From Chapter 3, we already know that

y(t) = c1e3t + c2e−2t, c1 =
1
5 , c2 =

4
5
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Upshot of §6.1 and 6.2

nth-order linear (with constant coefficients) ODEs in the t-domain

y(n)(t) + an−1y(n−1)(t) + · · ·+ a0y(t) = g(t)

⇔

Algebraic equations in the s-domain

+

Inverting Laplace Transform

Next sections: We will address generalize g(t).
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Step functions

Definition

The function uc(t) :=

0, t < c
1, t ≥ c.

is known as the unit step function or

Heaviside function.

Exercise

Check L(uc)(s) =

e−cs 1s , c > 0
1
s c < 0

s > 0

Indeed,
L(uc(t)f(t− c))(s) = e−csL(f)(s), c > 0
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§6.3 summary

uc(t) :=

0, t < c
1, t ≥ c.

Theorem 6.3.1
If L(f)(s) exists for s > a ≥ 0 and c > 0, then

L
[
uc(t)f(t− c)

]
(s) = e−csL(f)(s), s > a

Theorem 6.3.2
If L(f)(s) exists for s > a ≥ 0, then

L
[
ectf(t)

]
(s) = L(f)(s− c), s > a+ c
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Exercise 6.3.20

Exercise
Find the inverse Laplace Transform of

e−2s
s2 + s− 2

• 1
s2 + s− 2 =

1
3

(
1

s− 1 −
1

s+ 2

)
• 1
s− a = L(eat)

• e−2sL(f)(s) = L(u2(t)f(t− 2))
• L−1

(
e−2s

s2+s−2

)
= 1

3u2(t)(e
t−2 − e4−2t)
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Exercise 6.2.24

A typical exercise from §6.4.

Exercise 6.2.24

Solve y′′ + 4y =

1, 0 ≤ t < π,

0, t ≥ π;
y(0) = 1, y′(0) = 0

Note: y′′ + 4y = 1− uπ(t)

y(t) = cos(2t) + 1
4(1− cos(2t))(1− uπ(t)) =


1+3 cos(2t)

4 0 ≤ t < π

cos(2t) t ≥ π
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Impulse functions, §6.5

We want a function δ such that:

• δ(t) = 0 for t ̸= 0
•
∫ +∞
−∞ δ(t)f(t) dt = f(0) for f continuous at 0.

There is no such function!

However we can use it as “generalized function“.

δ(t) is known as unit impulse function or as Dirac delta function
Even though δ(t) is NOT a function!

L(δ(t))(s) = 1 L(δ(t− c))(s) = e−cs
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δ as a non existing limit of functions

We can think of δ(t) as the limit lima→0
1

a
√
π
e−(x/a)2

-0.4 -0.2 0.2 0.4

1

2

3

4

5

6

Click here for gif!
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As a non existing derivative

If f is differentiable and limt→+∞ f(t) = 0 we have∫
R
u0(t)(−f′(t)) dt =

∫ +∞

0
(−f′(t)) dt

= f(0)− lim
A→+∞

f(A) = f(0)∫
R
u0(t)(−f′(t)) dt “ = ” lim

A→+∞
[−u0(t)f(t)]A−A +

∫
R

du0
dt (t)f(t) dt

= f(0)

One can think of δ(t) = d
dtu0(t)

Click to check:

• u0(x) on Wolfram Alpha: link
• u′0(x) on Wolfram Alpha: link
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Exercise 6.5.6

Exercise 6.5.6

Solve y′′ + 4y = δ(t− 4); y(0) = 1
2 , y

′(0) = 0

In the s-domain, with F(s) = L(y)(s)

s2F(s)− s 12 − 0+ 4F(s) = e−4s

⇔

F(s) = 1
s2 + 4

(
e−4s + s

2

)
=
1
2

(
e−4s 2

s2 + 4 +
s

s2 + 4

)
⇔

y(t) = 1
2 (u4(t) sin(2(t− 4)) + cos(2t))
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Exercise 6.5.12

Exercise 6.5.12
Solve

y(4) − y = δ(t− 1); y(0) = y′(0) = y′′(0) = y(3)(0) = 0

In the s-domain, with F(s) = L(y)(s)

s4F(s)− F(s) = e−s

⇔

F(s) = e−s 1
s4 − 1 = e−s 1

(s− 1)(s+ 1)(s2 − 1) =
e−s
4

(
(−2) 1

s2 + 1 −
1

s+ 1 +
1

s− 1

)
⇔

y(t) = u1(t)
4

(
−e1−t + et−1 + 2 sin(1− t)

)
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The convolution integral

Theorem 6.6.1
If F(s) = L(f)(s) and G(s) = L(g)(s) for s > a ≥ 0, then

H(s) = F(s)G(s) = L(h)(s)

where
h(t) =

∫ t

0
f(t− s)g(s) ds =

∫ t

0
f(t)g(t− s) ds := (f ∗ g)(t)

The function h(t) = (f ∗ g)(t) is known as the convolution of f and g.
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Exercise 6.6.14

Exercise 6.6.14
Solve y′′ + 2y′ + 2y = sin(αt); y(0) = 0, y′(0) = 0

• L(sin(αt))(s) = α
s2+α2

• s2F(s) + 2sF(s) + 2F(s) = α
s2+α2

• F(s) = 1
(s+1)2+1

α
s2+α2

• L(ectf(t)) = L(f)(s− c)

• y(t) = sin(αt) ∗
(
e−t sin t

)
=

∫ t
0 sin((t− z)α)e−z sin z dz

Check out the Khan Academy video solving the same problem: link
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Volterra integral equation

Exercise 6.6.21
Solve

ϕ(t) +
∫ t

0
k(t− z)ϕ(z) dz = f(t)

in terms of L(f) and L(k).

Exercise 6.6.25

1. Take k(t) = 2 cos(t) and f(t) = e−t, and solve the equation above.
2. Convert the equation above into a 2nd order differential equation

Use: d
dt
∫ t
0 k(t− z)ϕ(z) dz = k(0)ϕ(t) +

∫ t
0 k

′(t− z)ϕ(z) dz
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