Math 23: Differential Equations Midterm Exam

January 25, 2018

NAME:	
SECTION (check one box):	Section 1 (S. Nanda 10:10) Section 2 (A. Gelb 12:50) Section 3 (P. Puente 2:10)
Instructions:	
1. Wait for signal to begin.	
2. Write your name in the spelong to.	pace provided, and check one box to indicate which section of the course you
3. Please turn off cell phone	es or other electronic devices which may be disruptive.
	a must justify your solutions to receive full credit. Work that is illegible may scratched out will not be graded.
	er in a form such as $\ln(.02)$ or $\sqrt{239}$ or $(385)(13^3)$. However, if an expression can $e^{\ln(.02)}$ or $\cos(\pi)$ or $(3-2)$), you should simplify it.
	You may not use notes, or other external resource. You may use calculators. r code to give or receive help on this exam. However, you may ask the instructors.
Honor statement: I have neither are my own work.	er given nor received any help on this exam, and I attest that all of the answers
Signature:	

Problem	Points	Score
1	24	
2	20	
3	22	
4	13	
5	21	
Total	100	

- 1. [24 points] TRUE or FALSE? You must provide a concise justification if you claim the statement is false. In some cases a counter-example might be the easiest way to justify your answer.
 - (a) Critical points (equilibrium points) for a first order ordinary differential equation y'(t) = f(t, y) are those points where the slope of the solution is a constant everywhere.
 - (b) The ODE $\frac{dy}{dt} y t^2 = (y t)(y + t)$ is autonomous.
 - (c) The differential equation $y'' + t^2y' y = 3$ is linear.
 - (d) If f(x) is continuous everywhere, then there exists a unique solution to f(x)y' = y, y(0) = 0.
 - (e) $a\sin(t) + b\cos(t)$ is a solution of y'' + y = 0 for all values of $a, b \in \mathbb{R}$.
 - (f) Euler's method is a quadratic approximation to the solution $y = \phi(t)$ for the initial value problem $y' = f(t, y), \quad y(t_0) = y_0.$

- 2. [20-points] Consider the equation y' = f(y), where f(y) = (y 5)(y 2)(y + 3).
 - (a) [4-points] Determine all critical points.
 - (b) [7-points] Draw a graph of f(y) vs y and a phase line diagram.
 - (c) [9-points] Draw a graph that describes the long term behavior of the solution for all values $y_0 = y(0)$ and identify equilibrium solutions on the graph. Characterize the equilibrium solutions in terms of their stability.

- 3. [22- points] A tank with a capacity of 100 gallons contains 50 gallons of a solution consisting of water and dye. Initially there is 1 ounce of dye in the solution. Water containing a concentration of $\frac{e^{t/50}}{t+50}$ oz/gal flows in at a rate of 3 gal/min and flows out at 2 gal/min. Assume that the tank is well mixed.
 - (a) [8-points] Write a differential equation that determines the amount of dye in the solution.
 - (b) [10 -points] Find the amount of the dye in the solution at any given time t.
 - (c) [4-points] Find the amount of dye in the solution when the tank is about to overflow.

4. [13-points] Find the general solution to

$$e^{x} + 2xy^{2} + (2x^{2}y - \frac{1}{y})\frac{dy}{dx} = 0$$

5. [21-points] Consider the initial value problem

$$y' = y - t^2 + 1$$
, $y(0) = .5$, $0 \le t \le 2$.

- (a) [2-points] Verify that $\phi(t) = (t+1)^2 \frac{e^t}{2}$ is the exact solution for this problem.
- (b) [6-points] If the step size is given by h = .2, determine the local truncation error valid on the interval [0, 2] for solving this problem using the forward Euler's method.
- (c) [4-points] What step size is needed to ensure that the local truncation error is no greater than .001?
- (d) [9-points] Draw a diagram that demonstrates the numerical approximation using both forward and backward Euler's method from the point $t_0 = 0$ to the point $t_1 = .2$. You may approximate $\phi(t)$ to simplify your sketch. Label the solution at the corresponding values y_0 and y_1 .