Notes on Heat Equation on a plate

Let Ω be a circle of radius $r=1$. We want to solve

$$
\begin{align*}
u_{t} & =a^{2} \Delta u(\boldsymbol{x})=a^{2}\left(u_{r r}+\frac{1}{r} u_{r}\right) \quad 0 \leq r \leq 1 \\
u(0, t) & =0 \tag{0.1}\\
u(r, 0) & =F(r)
\end{align*}
$$

We assume that the solution is separable, ie. $u(r, t)=R(r) T(t)$. Plugging this into (0.1) we find

$$
R T^{\prime}=a^{2}\left(R^{\prime \prime}+\frac{1}{r} R^{\prime}\right) T
$$

We can separate this equation by grouping R 's and T 's.

$$
\frac{T^{\prime}}{a^{2} T}=\frac{R^{\prime \prime}+\frac{1}{r} R^{\prime}}{R}=-\lambda^{2}
$$

where λ is a constant to be determined.
First solving $\frac{T^{\prime}}{a^{2} T}=-\lambda^{2}$, we find $T(t)=e^{-a^{2} \lambda^{2} t}$.
Now we must solve

$$
\frac{R^{\prime \prime}+\frac{1}{r} R^{\prime}}{R}=-\lambda^{2} .
$$

Putting everything on one side and multiplying by r^{2}, we get a second order differential equation

$$
\begin{equation*}
r^{2} R^{\prime \prime}+r R^{\prime}+\lambda^{2} r^{2} R=0 \tag{0.2}
\end{equation*}
$$

Note that this is very similar to the $0^{\text {th }}$ order Bessel equation. To see the difference, lets look for a series solution of the form

$$
R(r)=\sum_{n=1}^{\infty} a_{n}(k) x^{n+k}
$$

Plugging this into (0.2), we find the indicial equation is $k^{2}=0, a_{1}=0$ and the recurrence relation for the coefficients is

$$
a_{n}=-\frac{\lambda^{2} a_{n-2}}{n^{2}} .
$$

Since $a_{1}=0$, all odd terms must equal zero.

$$
a_{2 m}=\frac{(-1)^{m}\left(\lambda^{2}\right)^{m} a_{0}}{(m!)^{2} 2^{2 m}}
$$

So the series solution is

$$
R_{1}(r)=1+\sum_{n=1}^{\infty} \frac{(-1)^{m}(\lambda r)^{2 m}}{(m!)^{2} 2^{2 m}}=J_{0}(\lambda r)
$$

Likewise, the second homogeneous solution is given by $Y_{0}(\lambda r)$. Thus $R(r)=c_{1} J_{0}(\lambda r)+$ $c_{2} Y_{0}(\lambda r)$. Now Y_{0} blows up at the origin so we must set $c_{2}=0$.

Thus $R(r)=c_{1} J_{0}(\lambda r)$. Hence, $u(r, t)=c_{1} J_{0}(\lambda r) e^{-a^{2} \lambda^{2} t}$.
We know that $u(1, t)=0=J_{0}(\lambda)$. This means that λ must be the roots of J_{0}. J_{0} has infinitely many roots thus by superposition

$$
u(r, t)=\sum_{l=0}^{\infty} c_{l} J_{0}\left(\lambda_{l} r\right) e^{-a^{2} \lambda_{l}{ }^{2} t}
$$

The initial condition $u(r, 0)=F(r)$ determines the coefficients c_{l}. The coefficients are (without explanation)

$$
c_{l}=\frac{2}{J_{1}^{2}\left(\lambda_{l}\right)} \int_{0}^{1} x J_{0}\left(\lambda_{l} r\right) F(r) d r .
$$

