Second Order Linear ODEs, Part I

Craig J. Sutton
craig.j.sutton@dartmouth.edu
Department of Mathematics
Dartmouth College

Math 23 Differential Equations Winter 2013

Outline

(1) Second Order Equations

- Overview

2 Theory of Homogeneous Linear ODEs

- Overview
- Motivating Examples
- The Wronskian \& the Existence of Solutions
(3) Solving 2nd Order Linear Homogeneous ODEs
- Homogeneous Constant Coefficient
- Positive Discriminant
- Negative Discriminant
- Zero Discriminant

Outline

(1) Second Order Equations

- Overview
(2) Theory of Homogeneous Linear ODEs
- Overview
- Motivating Examples
- The Wronskian \& the Existence of Solutions
(3) Solving 2nd Order Linear Homogeneous ODEs
- Homogeneous Constant Coefficient
- Positive Discriminant
- Negative Discriminant
- Zero Discriminant

The Definition

Definition

A second order ODE has the form

$$
\frac{d^{2} y}{d t}=f\left(t, y, \frac{d y}{d t}\right) .
$$

A second order linear ODE has the form

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

or

$$
R(t) y^{\prime \prime}+P(t) y^{\prime}+Q(t) y=G(t)
$$

We'll say the equation is homogeneous if $g(t)=0$ or $G(t)=0$.

The Definition

Definition

A second order ODE has the form

$$
\frac{d^{2} y}{d t}=f\left(t, y, \frac{d y}{d t}\right)
$$

A second order linear ODE has the form

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

or

$$
R(t) y^{\prime \prime}+P(t) y^{\prime}+Q(t) y=G(t)
$$

We'll say the equation is homogeneous if $g(t)=0$ or $G(t)=0$.

A Second Order ODE Example: the Vibrating Spring

- Consider a spring with spring constant k and a block of mass m attached to the end.
- Let $x(t)$ denote the displacement of the block-spring system from the spring-mass equilibrium.
- $x(t)$ is governed by the 2nd order linear ODE

$$
m x^{\prime \prime}=-k x+m g
$$

- Getting fancy we obtain

$$
m x^{\prime \prime}=-k x+m g+D\left(x^{\prime}\right)+F(t)
$$

where D is the damping force and $F(t)$ is the external force.

Linearity

If $y_{1}(t)$ and $y_{2}(t)$ solve the homogeneous 2nd order linear ODE

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

then for any c_{1} and c_{2} the function

$$
\phi(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

solves the ODE.

Initial Value Problems

Definition

A second order linear IVP consists of a 2 nd order linear ODE

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \tag{1.1}
\end{equation*}
$$

and initial conditions

$$
y\left(t_{0}\right)=y_{0} \text { and } y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
$$

Note: There is no general solution method for 2nd order linear ODEs, but we do have an existence and uniqueness theorem.

Existence \& Uniqueness

Theorem

Consider the IVP

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t), y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime} \tag{1.2}
\end{equation*}
$$

where p, q and g are continuous on some open interval I containing t_{0}. Then there is exactly one solution $y=\phi(t)$ of Eq. 1.2 and it is defined and at least twice differentiable throughout the interval I.

Moral

If p, q and g are continuous, then a solution $\phi(t)$ to the second order linear ODE is uniquely determined by the initial data: $\phi\left(t_{0}\right)$ and $\phi^{\prime}\left(t_{0}\right)$.

Exercises

(1) Find the longest interval on which a solution to the IVP

$$
\left(t^{2}+7 t\right) y^{\prime \prime}+\left(t^{3}+t\right) y^{\prime}-(t+3) y=0, y(2)=-7, y^{\prime}(2)=1,
$$

is guaranteed to exist.
(2) Find a solution to the IVP

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0, y\left(t_{0}\right)=0, y^{\prime}\left(t_{0}\right)=0,
$$

where p and q are continuous on an open interval I containing t_{0}. Is it unique?

Outline

(9) Second Order Equations

- Overview
(2) Theory of Homogeneous Linear ODEs
- Overview
- Motivating Examples
- The Wronskian \& the Existence of SolutionsSolving 2nd Order Linear Homogeneous ODEs
- Homogeneous Constant Coefficient
- Positive Discriminant
- Negative Discriminant
- Zero Discriminant

Game Plan

- Consider 2nd order homogeneous linear ODE

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0,
$$

- We will see that the solutions will come in a $2 D$-family

$$
c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

where c_{1} and c_{2} are constants.

- Find a solution $\Psi(t)$ to the non-homogeneous equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) .
$$

- Then all solutions to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$ will be of the form

$$
\Psi(t)+c_{1} y_{1}(t)+c_{2} y_{2}(t),
$$

where c_{1} and c_{2} are arbitrary constants (determined by initial conditions).

Game Plan

- We will restrict our attention to constant coeff. equations:

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t)
$$

- In the third part of these notes we will see that you can always find explicit solutions to the associated homogeneous problem

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

- Method of Undetermined Coefficients and Variation of Parameters will help with the non-homogeneous problem.

Moral

Analyze the homogeneous case before tackling the general case.

Example 1

- Consider the IVP

$$
\begin{equation*}
y^{\prime \prime}-y=0, y(0)=1, y^{\prime}(0)=2 . \tag{2.1}
\end{equation*}
$$

- $y_{1}(t)=e^{t}$ and $y_{2}(t)=e^{-t}$ are distinct solutions to the homogeneous ODE $y^{\prime \prime}-y=0$.
- In fact, $\phi(t)=c_{1} e^{t}+c_{2} e^{-t}$ solves the ODE for any choice of c_{1} and c_{2}.
- Can we choose c_{1} and c_{2} such that $\phi(0)=1$ and $\phi^{\prime}(0)=2$?
- Yes, take $c_{1}=\frac{3}{2}$ and $c_{2}=-\frac{1}{2}$
- Then $\phi(t)=\frac{3}{2} e^{t}-\frac{1}{2} e^{-t}$ solves our IVP.

Example 1 (cont'd)

- Consider the IVP

$$
\begin{equation*}
y^{\prime \prime}-y=0, y(0)=a, y^{\prime}(0)=b \tag{2.2}
\end{equation*}
$$

- Can we choose c_{1} and c_{2} such that

$$
\phi(t)=c_{1} e^{t}+c_{2} e^{-t}
$$

solves the IVP?

- Yes, take $c_{1}=\frac{a+b}{2}$ and $c_{2}=\frac{a-b}{2}$
- So, any solution to our ODE is of the form

$$
c_{1} e^{t}+c_{2} e^{-t}(\text { why? })
$$

That is, we have a two-dimensional family of solutions.

Example 2

- Consider the IVP

$$
\begin{equation*}
y^{\prime \prime}-2 y^{\prime}-35 y=0, y(0)=1, y^{\prime}(0)=2 . \tag{2.3}
\end{equation*}
$$

- $y_{1}(t)=e^{-7 t}$ and $y_{2}(t)=e^{5 t}$ are distinct solutions to the homogeneous ODE $y^{\prime \prime}-2 y^{\prime}-35 y=0$.
- In fact, $\phi(t)=c_{1} e^{-7 t}+c_{2} e^{5 t}$ solves the ODE for any choice of c_{1} and c_{2}.
- Can we choose c_{1} and c_{2} such that $\phi(0)=1$ and $\phi^{\prime}(0)=2$?
- Yes, take $c_{1}=\frac{1}{4}$ and $c_{2}=\frac{3}{4}$
- Then $\phi(t)=\frac{1}{4} e^{-7 t}+\frac{3}{4} e^{5 t}$ solves our IVP.

Example 2 (cont'd)

- Consider the IVP

$$
\begin{equation*}
y^{\prime \prime}-2 y^{\prime}-35 y=0, y(0)=a, y^{\prime}(0)=b \tag{2.4}
\end{equation*}
$$

- Can we choose c_{1} and c_{2} such that

$$
\phi(t)=c_{1} e^{-7 t}+c_{2} e^{5 t}
$$

solves the IVP?

- Yes, take $c_{1}=\frac{5 a-b}{12}$ and $c_{2}=\frac{7 a+b}{12}$
- So any solution to our ODE is of the form

$$
c_{1} e^{-7 t}+c_{2} e^{5 t}(\text { why? })
$$

That is, we have a two-dimensional family of solutions.

Moral

In each of the previous examples we were able to find two solutions y_{1} and y_{2} of our ODE such that the matrix

$$
\left(\begin{array}{ll}
y_{1}\left(t_{0}\right) & y_{2}\left(t_{0}\right) \\
y_{1}^{\prime}\left(t_{0}\right) & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right)
$$

is invertible (i.e., has non-zero determinant).
We could then express any solution to the ODE as a linear combination

$$
\phi(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t) .
$$

Question

Does this work for a general 2nd order linear homogeneous ODE?

Linear Independence

Definition

Let f and g be two functions defined on some open interval $I: \alpha<t<\beta$. We will say that f and g are linearly dependent on the interval I if there are constants c_{1} and c_{2} (not both zero) such that

$$
c_{1} f(t)+c_{2} g(t)=0
$$

for all t in the interval l. That is, one of the functions is a scalar multiple of the other. Otherwise, we say that the functions are linearly independent on the interval I.

Linear Independence: some Examples

(1) $f(t)=t^{2}+2 t$ and $g(t)=0$ are linearly dependent on $-\infty<t<\infty$.
(2) $f(t)=t^{2}+2 t$ and $g(t)=-9 t^{2}-18 t$ are linearly dependent on $-\infty<t<\infty$.
(0) $f(t)=\cos (t)$ and $g(t)=\sin (t)$ are linearly independent on $-\infty<t<\infty$.
(9) $f(t)=\frac{1}{t}$ and $g(t)=\sin (t)$ are linearly independent on $0<t<+\infty$.

The Wronskian

Definition

Let f and g be two functions defined on some open interval $I: \alpha<t<\beta$. The Wronskian of f and g denoted $W(f, g)(t)$ is the function on $/$ defined by

$$
W(f, g)(t)=\operatorname{det}\left(\begin{array}{cc}
f(t) & g(t) \\
f^{\prime}(t) & g^{\prime}(t)
\end{array}\right)=f(t) g^{\prime}(t)-f^{\prime}(t) g(t)
$$

The Wronskian provides a test for linear independence...

The Wronskian \& Linear Independence

Theorem

Let f and g be differentiable functions on some interval I. If $W(f, g)\left(t_{0}\right) \neq 0$ for some t_{0} in I, then f and g are linearly independent.

Fundamental Sets \& the Wronskian

Definition

Two solutions $y_{1}(t)$ and $y_{2}(t)$ of the 2nd order linear ODE

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0, \alpha<t<\beta
$$

are said to form a fundamental set of solutions (on the interval) if there is a number $\alpha<t_{0}<\beta$ such that

$$
W\left(y_{1}, y_{2}\right)\left(t_{0}\right) \neq 0
$$

Question

Does a fundamental set of solutions always exist?

Fundamental Sets \& the Wronskian

Question

What's so special about fundamental sets of solutions?
We will see that a fundamental sets of solutions $\left\{y_{1}, y_{2}\right\}$ to a 2nd Order linear homogeneous ODE on an interval / generate all solutions to the ODE on I.

The Wronskian \& Linear Independence

Theorem (3.2.6, Abel's Theorem)

If y_{1} and y_{2} are solutions to the $2 n d$ order ODE $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$, where p and q are continuous on I, then

$$
W\left(y_{1}, y_{2}\right)(t)=c \exp \left(-\int p(t) d t\right)
$$

where c is a constant that only depends on y_{1} and y_{2}. So, $W\left(y_{1}, y_{2}\right)(t)$ is zero everywhere on I or never zero.

The Wronskian \& Fundamental Sets of Solutions

Theorem

Suppose that $y_{1}(t)$ and $y_{2}(t)$ are solutions to the Linear ODE

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

Now suppose

(1) p and q are continuous at t_{0}
(2) $W\left(y_{1}, y_{2}\right)\left(t_{0}\right) \neq 0$ (i.e., y_{1} and y_{2} are lin. indep.)

Then there exist unique constants c_{1} and c_{2} such that $\phi(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$ satisfies the IVP

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0, y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime} .
$$

That is $\left\{y_{1}, y_{2}\right\}$ forms a fundamental set of solutions.

The Wronskian \& Fundamental Sets of Solutions

Moral

If $\left\{y_{1}(t), y_{2}(t)\right\}$ is a fundamental set of solutions to the 2 nd Order Linear Homogeneous ODE

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

on the interval I. Then every solution to this ODE on I can be expressed as

$$
c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

for some unique choice of real numbers C_{1} and c_{2}.

Existence of Fundamental Sets

Theorem (3.2.5)

Consider the 2nd order linear ODE

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

where p and q are continuous on some interval I. Choose a point t_{0} in I. Let $y_{1}(t)$ be the solution to the ODE with initial data $y_{1}\left(t_{0}\right)=1$ and $y_{1}^{\prime}\left(t_{0}\right)=0$, and let $y_{2}(t)$ be the solution to the ODE with initial data $y_{2}\left(t_{0}\right)=0$ and $y_{2}\left(t_{0}\right)=1$. Then $y_{1}(t)$ and $y_{2}(t)$ form a fundamental set of solutions for the ODE on the interval I.

All of the Solutions

Theorem

Let $\Psi(t)$ be some solution to the 2nd order linear ODE

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t), \alpha<t<\beta
$$

where p and q are continuous. Let $\left\{y_{1}(t), y_{2}(t)\right\}$ be a fundamental set of solutions to the associated homogeneous equation. Then all solutions to our ODE on the interval $\alpha<t<\beta$ are of the form

$$
\psi(t)+c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

where c_{1} and c_{2} are constants.

Outline

(1) Second Order Equations

- Overview

(2)
Theory of Homogeneous Linear ODEs

- Overview
- Motivating Examples
- The Wronskian \& the Existence of Solutions

3 Solving 2nd Order Linear Homogeneous ODEs

- Homogeneous Constant Coefficient
- Positive Discriminant
- Negative Discriminant
- Zero Discriminant

The Idea

We showed $\left\{y_{1}(t)=e^{t}, y_{2}(t)=e^{-t}\right\}$ is a fundamental set of solutions for $y^{\prime \prime}-y=0$. How did we get these solutions?
> - Assume solution looks like $y(t)=e^{r t}$.
> - Then $y(t)$ solves equation if and only if $r^{2}-1=0$. Why?
> - Hence, $y(t)$ solves ODE if and only if $r= \pm 1$
> - So e^{t} and e^{-t} are solutions.
> - $W\left(e^{t}, e^{-t}\right)(t) \neq 0$ implies fundamental set.

Moral: We reduced solving this const. coeff. equation to finding roots of a quadratic.

The Idea

We showed $\left\{y_{1}(t)=e^{t}, y_{2}(t)=e^{-t}\right\}$ is a fundamental set of solutions for $y^{\prime \prime}-y=0$. How did we get these solutions?

- Assume solution looks like $y(t)=e^{r t}$.
- Then $y(t)$ solves equation if and only if $r^{2}-1=0$. Why?
- Hence, $y(t)$ solves ODE if and only if $r= \pm 1$.
- So e^{t} and e^{-t} are solutions.
- $W\left(e^{t}, e^{-t}\right)(t) \neq 0$ implies fundamental set.

Moral: We reduced solving this const. coeff. equation to finding roots of a quadratic.

In General

Consider that 2nd order homogeneous linear ODE

$$
a y^{\prime \prime}+b y^{\prime}+c y=0 .
$$

- Assume solution looks like $y(t)=e^{r t}$.
- Then $y(t)$ solves equation if and only if $a r^{2}+b r+c=0$.
- Let $\Delta=b^{2}$ - 4ac.
- There are three cases for the roots r_{1} and r_{2} of the characteristic equation.
- $r_{1} \neq r_{2}$ are real (i.e., $\Delta>0$).
(2) $\begin{aligned} & r_{1}=\nu+i \mu, r_{2}=\nu-i \mu \text {, where } \mu \text {, } \\ & r_{1}=r_{2} \text { real numbers (i.e., } \Delta=0 \text {). }\end{aligned}$

In General

Consider that 2nd order homogeneous linear ODE

$$
a y^{\prime \prime}+b y^{\prime}+c y=0 .
$$

- Assume solution looks like $y(t)=e^{r t}$.
- Then $y(t)$ solves equation if and only if $a r^{2}+b r+c=0$.
- Let $\Delta=b^{2}-4 a c$.
- There are three cases for the roots r_{1} and r_{2} of the characteristic equation.

In General

Consider that 2nd order homogeneous linear ODE

$$
a y^{\prime \prime}+b y^{\prime}+c y=0 .
$$

- Assume solution looks like $y(t)=e^{r t}$.
- Then $y(t)$ solves equation if and only if $a r^{2}+b r+c=0$.
- Let $\Delta=b^{2}-4 a c$.
- There are three cases for the roots r_{1} and r_{2} of the characteristic equation.
(1) $r_{1} \neq r_{2}$ are real (i.e., $\Delta>0$).
(2) $r_{1}=\nu+i \mu, r_{2}=\nu-i \mu$, where $\mu \neq 0$ (i.e., $\Delta<0$).
(3) $r_{1}=r_{2}$ real numbers (i.e., $\Delta=0$).

In General

Consider that 2nd order homogeneous linear ODE

$$
a y^{\prime \prime}+b y^{\prime}+c y=0 .
$$

- Assume solution looks like $y(t)=e^{r t}$.
- Then $y(t)$ solves equation if and only if $a r^{2}+b r+c=0$.
- Let $\Delta=b^{2}-4 a c$.
- There are three cases for the roots r_{1} and r_{2} of the characteristic equation.
(1) $r_{1} \neq r_{2}$ are real (i.e., $\Delta>0$).
(2) $r_{1}=\nu+i \mu, r_{2}=\nu-i \mu$, where $\mu \neq 0$ (i.e., $\Delta<0$).

In General

Consider that 2nd order homogeneous linear ODE

$$
a y^{\prime \prime}+b y^{\prime}+c y=0 .
$$

- Assume solution looks like $y(t)=e^{r t}$.
- Then $y(t)$ solves equation if and only if $a r^{2}+b r+c=0$.
- Let $\Delta=b^{2}-4 a c$.
- There are three cases for the roots r_{1} and r_{2} of the characteristic equation.
(1) $r_{1} \neq r_{2}$ are real (i.e., $\Delta>0$).
(2) $r_{1}=\nu+i \mu, r_{2}=\nu-i \mu$, where $\mu \neq 0$ (i.e., $\Delta<0$).
(3) $r_{1}=r_{2}$ real numbers (i.e., $\Delta=0$).

Case 1: $\Delta>0$ (Distinct Real Roots)

- $r_{1} \neq r_{2}$ real roots
- $y_{1}(t)=e^{r_{1} t}$ and $y_{2}(t)=e^{r_{2} t}$ solve

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

- $W\left(y_{1}, y_{2}\right)(t) \neq 0$
- So $\left\{y_{1}(t), y_{2}(t)\right\}$ forms a fundamental set of solutions
- $\phi(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$ is the general solution.

Case 1: $\Delta>0$ (Distinct Real Roots)

Solve the following IVPs
(1) $y^{\prime \prime}+9 y^{\prime}+20 y=0, y(1)=3, y^{\prime}(1)=0$.
(2) $2 y^{\prime \prime}-20 y^{\prime}+42 y=0, y(2)=3, y^{\prime}(2)=5$.
(3) $3 y^{\prime \prime}+12 y^{\prime}+9 y=0, y(-1)=9, y^{\prime}(-1)=2$.

Case 2: $\Delta<0$ (maginary Roots)

First we recall a few things

- $i=\sqrt{-1}$
- $z=\nu+i \mu$ is a complex number
- (Euler's Formula) $e^{i t}=\cos (t)+i \sin (t)$
- $e^{\nu+i \mu}=e^{\nu} e^{i \mu}=e^{\nu}(\cos (\mu)+i \sin (\mu))$
- If z and w are complex numbers then $e^{z+w}=e^{z} e^{w}$.
- $y(t)=e^{z t}$, then $y^{\prime}(t)=z e^{z t}$.

Case 2: $\Delta<0$ (Imaginary Roots)

Now since $\Delta<0$ we have:

- $r_{1}=\nu+i \mu$ and $r_{2}=\nu-i \mu$ with $\mu \neq 0$.
- $\tilde{y}_{1}(t)=e^{r_{1} t}$ and $\tilde{y}_{2}(t)=e^{r_{2} t}$ solve

$$
a y^{\prime \prime}+b y^{\prime}+c y=0 .
$$

- W $W\left(\tilde{y}_{1}, \tilde{y}_{2}\right)(t) \neq 0$
- So $\left\{\tilde{y}_{1}(t), \tilde{y}_{2}(t)\right\}$ forms a fundamental set of solutions
- But \tilde{y}_{1} and \tilde{y}_{2} are not real-valued functions.

Case 2: $\Delta<0$ (maginary Roots)

However

- $y_{1}(t)=\frac{1}{2} \tilde{y}_{1}(t)+\frac{1}{2} \tilde{y}_{2}(t)=e^{\nu t} \cos (\mu t)$
- $y_{2}(t)=\frac{1}{2 i} \tilde{y}_{1}(t)-\frac{1}{2 i} \tilde{y}_{2}(t)=e^{\nu t} \sin (\mu t)$
are real-valued solutions. In fact,

$$
W\left(y_{1}, y_{2}\right)(t) \neq 0
$$

Hence, $\left\{e^{\nu t} \cos (\mu t), e^{\nu t} \sin (\mu t)\right\}$ is a fundamental set of solutions.

Case 2: $\Delta<0$ (Imaginary Roots)

Solve the following IVPs:
(1) $y^{\prime \prime}+16 y=0, y(\pi / 2)=1, y^{\prime}(\pi / 2)=0$.
(2) $2 y^{\prime \prime}+2 y^{\prime}+y=0, y(0)=1, y^{\prime}(0)=3$.
(0) $3 y^{\prime \prime}+4 y^{\prime}+3 y=0, y(-\pi / 4)=3, y^{\prime}(-\pi / 4)=2$.

Case 3: $\Delta=0$ (Repeated Real Roots)

- $r_{1}=r_{2}=-\frac{b}{2 a}$ are real.
- $y_{1}(t)=e^{r_{1} t}$ is a solution, but we need another.
- Suppose $y(t)=v(t) y_{1}=v(t) e^{-b t / 2 a}$ is a solution.
- Then

$$
y_{2}^{\prime}(t)=v^{\prime}(t) e^{-b t / 2 a}-\frac{b}{2 a} v(t) e^{-b t / 2 a}
$$

and

$$
y_{2}^{\prime \prime}(t)=v^{\prime \prime}(t) e^{-b t / 2 a}-\frac{b}{a} v^{\prime}(t) e^{-b t / 2 a}+\frac{b^{2}}{4 a^{2}} v(t) e^{-b t / 2 a}
$$

Case 3: $\Delta=0$ (Repeated Real Roots)

- Use the differential Eq. to see

$$
v^{\prime \prime}(t)=0
$$

- Hence $v(t)=c_{1} t+c_{2}$
- $y(t)=c_{1} t e^{-b t / 2 a}+c_{2} e^{-b t / 2 a}$.
- $W\left(e^{-b t / 2 a}, t e^{-b t / 2 a}\right)(t)=e^{-b t / 2 a}$
- Hence, $\left\{e^{-b t / 2 a}, t e^{-b t / 2 a}\right\}$ forms a fundamental set of solutions our ODE.
- This is an example of the method of Reduction of Order

Case 3: $\Delta=0$ (Repeated Real Roots)

Solve the following IVPs:
(1) $y^{\prime \prime}-y^{\prime}+0.25 y=0, y(0)=2, y^{\prime}(0)=\frac{1}{3}$.
(2) $2 y^{\prime \prime}+8 y^{\prime}+8 y=0, y(1)=3 y^{\prime}(1)=-2$.
(3) $y^{\prime \prime}-6 y^{\prime}+9 y=0, y(-2)=3 y^{\prime}(-2)=3$.

Case 3: $\Delta=0$ (Repeated Real Roots)

Here's another way to find the fundamental set of solutions in this case:

- Let $L=a \frac{d^{2}}{d y^{2}}+b \frac{d}{d y}+c$ and assume $a r^{2}+b r+c=0$ has a repeated root r_{1}.
- Then

$$
L\left(e^{r t}\right)=a\left(r-r_{1}\right)^{2} e^{r t}
$$

it equals zero if and only if $r=r_{1}$.

- So, as before, $y_{1}(t)=e^{r_{1} t}$ is a solution.

Case 3: $\Delta=0$ (Repeated Real Roots)

- Now

$$
\frac{\partial}{\partial r} L\left(e^{r t}\right)=L\left(\frac{\partial}{\partial r} e^{r t}\right)=L\left(t e^{r t}\right)=a t e^{r t}\left(r-r_{1}\right)^{2}+2 a e^{r t}\left(r-r_{1}\right)
$$

- Conclude that $t e^{r_{1} t}$ is a solution to $L(y)=0$.
- So, $y_{1}(t)=e^{r_{1} t}$ and $y_{2}(t)=t e^{r_{1} t}$ are solutions.
- As before, by computing the Wronskian, we see they form a fundamental set of solutions.
- See Problems 3.4.20 \& 3.4.21 for additional ways of seeing this.

