Second Order Linear ODEs, Part I

Craig J. Sutton craig.j.sutton@dartmouth.edu

Department of Mathematics Dartmouth College

Math 23 Differential Equations Winter 2013

C.J. Sutton Second Order Linear ODEs, Part I

◆□ > ◆□ > ◆豆 > ◆豆 > -

Outline

- Second Order Equations
 - Overview
- 2 Theory of Homogeneous Linear ODEs
 - Overview
 - Motivating Examples
 - The Wronskian & the Existence of Solutions
- Solving 2nd Order Linear Homogeneous ODEs
 - Homogeneous Constant Coefficient
 - Positive Discriminant
 - Negative Discriminant
 - Zero Discriminant

・ 同 ト ・ ヨ ト ・ ヨ ト

Second Order Equations Theory of Homogeneous Linear ODEs

Overview

Outline

Second Order Equations Overview Theory of Homogeneous

Solving 2nd Order Linear Homogeneous ODEs

- Overview
- Motivating Examples
- The Wronskian & the Existence of Solutions
- 3 Solving 2nd Order Linear Homogeneous ODEs
 - Homogeneous Constant Coefficient
 - Positive Discriminant
 - Negative Discriminant
 - Zero Discriminant

ヘロト ヘワト ヘビト ヘビト

Second Order Equations

Theory of Homogeneous Linear ODEs Solving 2nd Order Linear Homogeneous ODEs

The Definition

Definition

A second order ODE has the form

$$\frac{d^2y}{dt}=f(t,y,\frac{dy}{dt}).$$

Overview

A second order linear ODE has the form

$$y'' + p(t)y' + q(t)y = g(t)$$

0ľ

$$R(t)y'' + P(t)y' + Q(t)y = G(t).$$

We'll say the equation is homogeneous if g(t) = 0 or G(t) = 0.

イロト 不得 とくほ とくほとう

ъ

Second Order Equations

Overview

Theory of Homogeneous Linear ODEs Solving 2nd Order Linear Homogeneous ODEs

The Definition

Definition

A second order ODE has the form

$$\frac{d^2 y}{dt} = f(t, y, \frac{dy}{dt}).$$

A second order linear ODE has the form

$$y'' + p(t)y' + q(t)y = g(t)$$

or

$$R(t)y'' + P(t)y' + Q(t)y = G(t).$$

We'll say the equation is homogeneous if g(t) = 0 or G(t) = 0.

ヘロア 人間 アメヨア 人口 ア

ъ

A Second Order ODE Example: the Vibrating Spring

- Consider a spring with spring constant *k* and a block of mass *m* attached to the end.
- Let *x*(*t*) denote the displacement of the block-spring system from the spring-mass equilibrium.
- x(t) is governed by the 2nd order linear ODE

$$mx'' = -kx + mg.$$

Getting fancy we obtain

$$mx'' = -kx + mg + D(x') + F(t),$$

where *D* is the damping force and F(t) is the external force.

Linearity

Overview

If $y_1(t)$ and $y_2(t)$ solve the homogeneous 2nd order linear ODE

$$y'' + p(t)y' + q(t)y = 0$$

then for any c_1 and c_2 the function

$$\phi(t) = c_1 y_1(t) + c_2 y_2(t)$$

solves the ODE.

ヘロト 人間 ト ヘヨト ヘヨト

æ

Overview

Initial Value Problems

Definition

A second order linear IVP consists of a 2nd order linear ODE

$$y'' + p(t)y' + q(t)y = g(t)$$
 (1.1)

and initial conditions

$$y(t_0) = y_0$$
 and $y'(t_0) = y'_0$.

Note: There is no general solution method for 2nd order linear ODEs, but we do have an existence and uniqueness theorem.

ヘロト 人間 ト ヘヨト ヘヨト

Overview

Existence & Uniqueness

Theorem

Consider the IVP

$$y'' + p(t)y' + q(t)y = g(t), \ y(t_0) = y_0, y'(t_0) = y'_0,$$
 (1.2)

where p, q and g are continuous on some open interval I containing t_0 . Then there is exactly one solution $y = \phi(t)$ of Eq. 1.2 and it is defined and at least twice differentiable throughout the interval I.

Moral

If p, q and g are continuous, then a solution $\phi(t)$ to the second order linear ODE is uniquely determined by the initial data: $\phi(t_0)$ and $\phi'(t_0)$.

Exercises

Find the longest interval on which a solution to the IVP

$$(t^2+7t)y''+(t^3+t)y'-(t+3)y=0, y(2)=-7, y'(2)=1,$$

Overview

is guaranteed to exist.

Pind a solution to the IVP

$$y'' + p(t)y' + q(t)y = 0, \ y(t_0) = 0, y'(t_0) = 0,$$

where p and q are continuous on an open interval I containing t_0 . Is it unique?

くロト (過) (目) (日)

Overview Motivating Examples The Wronskian & the Existence of Solutions

Outline

Second Order Equations Overview

2 Theory of Homogeneous Linear ODEs

- Overview
- Motivating Examples
- The Wronskian & the Existence of Solutions
- 3 Solving 2nd Order Linear Homogeneous ODEs
 - Homogeneous Constant Coefficient
 - Positive Discriminant
 - Negative Discriminant
 - Zero Discriminant

ヘロト ヘ戸ト ヘヨト ヘヨト

Game Plan

Overview Motivating Examples The Wronskian & the Existence of Solutions

• Consider 2nd order homogeneous linear ODE

$$y'' + p(t)y' + q(t)y = 0,$$

• We will see that the solutions will come in a 2D-family

$$c_1 y_1(t) + c_2 y_2(t)$$

where c_1 and c_2 are constants.

• Find a solution $\Psi(t)$ to the non-homogeneous equation

$$y'' + p(t)y' + q(t)y = g(t).$$

• Then all solutions to y'' + p(t)y' + q(t)y = g(t) will be of the form

$$\Psi(t) + c_1 y_1(t) + c_2 y_2(t),$$

where c_1 and c_2 are arbitrary constants (determined by initial conditions).

ations Overview ODEs Motivating Examples ODEs The Wronskian & the Existence of

Game Plan

• We will restrict our attention to constant coeff. equations:

$$ay''+by'+cy=g(t)$$

 In the third part of these notes we will see that you can always find explicit solutions to the associated homogeneous problem

$$ay''+by'+cy=0$$

 Method of Undetermined Coefficients and Variation of Parameters will help with the non-homogeneous problem.

Moral

Analyze the homogeneous case before tackling the general case.

Overview Motivating Examples The Wronskian & the Existence of Solutions

Example 1

Consider the IVP

$$y'' - y = 0, y(0) = 1, y'(0) = 2.$$
 (2.1)

- y₁(t) = e^t and y₂(t) = e^{-t} are distinct solutions to the homogeneous ODE y'' − y = 0.
- In fact, φ(t) = c₁e^t + c₂e^{-t} solves the ODE for any choice of c₁ and c₂.
- Can we choose c_1 and c_2 such that $\phi(0) = 1$ and $\phi'(0) = 2$?
- Yes, take $c_1 = \frac{3}{2}$ and $c_2 = -\frac{1}{2}$
- Then $\phi(t) = \frac{3}{2}e^t \frac{1}{2}e^{-t}$ solves our IVP.

Overview Motivating Examples The Wronskian & the Existence of Solutions

Example 1 (cont'd)

Consider the IVP

$$y'' - y = 0, y(0) = a, y'(0) = b.$$
 (2.2)

• Can we choose c_1 and c_2 such that

$$\phi(t) = c_1 e^t + c_2 e^{-t}$$

solves the IVP?

- Yes, take $c_1 = \frac{a+b}{2}$ and $c_2 = \frac{a-b}{2}$
- So, any solution to our ODE is of the form

$$c_1 e^t + c_2 e^{-t}$$
 (why?)

That is, we have a two-dimensional family of solutions.

Overview Motivating Examples The Wronskian & the Existence of Solutions

Example 2

Consider the IVP

$$y'' - 2y' - 35y = 0, y(0) = 1, y'(0) = 2.$$
 (2.3)

- $y_1(t) = e^{-7t}$ and $y_2(t) = e^{5t}$ are distinct solutions to the homogeneous ODE y'' 2y' 35y = 0.
- In fact, $\phi(t) = c_1 e^{-7t} + c_2 e^{5t}$ solves the ODE for any choice of c_1 and c_2 .
- Can we choose c_1 and c_2 such that $\phi(0) = 1$ and $\phi'(0) = 2$?
- Yes, take $c_1 = \frac{1}{4}$ and $c_2 = \frac{3}{4}$
- Then $\phi(t) = \frac{1}{4}e^{-7t} + \frac{3}{4}e^{5t}$ solves our IVP.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Overview Motivating Examples The Wronskian & the Existence of Solutions

Example 2 (cont'd)

Consider the IVP

$$y'' - 2y' - 35y = 0, y(0) = a, y'(0) = b.$$
 (2.4)

• Can we choose c_1 and c_2 such that

$$\phi(t) = c_1 e^{-7t} + c_2 e^{5t}$$

solves the IVP?

- Yes, take $c_1 = \frac{5a-b}{12}$ and $c_2 = \frac{7a+b}{12}$
- So any solution to our ODE is of the form

$$c_1 e^{-7t} + c_2 e^{5t}$$
 (why?)

That is, we have a two-dimensional family of solutions.

Overview Motivating Examples The Wronskian & the Existence of Solutions

Moral

In each of the previous examples we were able to find two solutions y_1 and y_2 of our ODE such that the matrix

$$\left(\begin{array}{cc} y_1(t_0) & y_2(t_0) \\ y_1'(t_0) & y_2'(t_0) \end{array}\right)$$

is invertible (i.e., has non-zero determinant). We could then express any solution to the ODE as a linear combination

$$\phi(t) = c_1 y_1(t) + c_2 y_2(t).$$

Question

Does this work for a general 2nd order linear homogeneous ODE?

ヘロト ヘ戸ト ヘヨト ヘヨト

Overview Motivating Examples The Wronskian & the Existence of Solutions

Linear Independence

Definition

Let *f* and *g* be two functions defined on some open interval $I : \alpha < t < \beta$. We will say that *f* and *g* are **linearly dependent** on the interval *I* if there are constants c_1 and c_2 (not both zero) such that

 $c_1f(t)+c_2g(t)=0$

for all *t* in the interval *l*. That is, one of the functions is a scalar multiple of the other. Otherwise, we say that the functions are **linearly independent** on the interval *l*.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Overview Motivating Examples The Wronskian & the Existence of Solutions

Linear Independence: some Examples

- $f(t) = t^2 + 2t$ and g(t) = 0 are linearly dependent on $-\infty < t < \infty$.
- 2 $f(t) = t^2 + 2t$ and $g(t) = -9t^2 18t$ are linearly dependent on $-\infty < t < \infty$.
- $f(t) = \cos(t)$ and $g(t) = \sin(t)$ are linearly independent on $-\infty < t < \infty$.
- $f(t) = \frac{1}{t}$ and $g(t) = \sin(t)$ are linearly independent on $0 < t < +\infty$.

イロト 不得 とくほ とくほ とうほ

Overview Motivating Examples The Wronskian & the Existence of Solutions

The Wronskian

Definition

Let *f* and *g* be two functions defined on some open interval $I : \alpha < t < \beta$. The Wronskian of *f* and *g* denoted W(f,g)(t) is the function on *I* defined by

$$W(f,g)(t) = \det \left(egin{array}{cc} f(t) & g(t) \ f'(t) & g'(t) \end{array}
ight) = f(t)g'(t) - f'(t)g(t).$$

The Wronskian provides a test for linear independence...

くロト (過) (目) (日)

Overview Motivating Examples The Wronskian & the Existence of Solutions

The Wronskian & Linear Independence

Theorem

Let f and g be differentiable functions on some interval I. If $W(f,g)(t_0) \neq 0$ for some t_0 in I, then f and g are linearly independent.

ヘロト 人間 ト ヘヨト ヘヨト

Overview Motivating Examples The Wronskian & the Existence of Solutions

Fundamental Sets & the Wronskian

Definition

Two solutions $y_1(t)$ and $y_2(t)$ of the 2nd order linear ODE

$$\mathbf{y}'' + \mathbf{p}(t)\mathbf{y}' + \mathbf{q}(t)\mathbf{y} = \mathbf{0}, \ \alpha < t < \beta,$$

are said to form a **fundamental set of solutions** (on the interval) if there is a number $\alpha < t_0 < \beta$ such that

 $W(y_1,y_2)(t_0)\neq 0.$

Question

Does a fundamental set of solutions always exist?

くロト (過) (目) (日)

Overview Motivating Examples The Wronskian & the Existence of Solutions

Fundamental Sets & the Wronskian

Question

What's so special about fundamental sets of solutions?

We will see that a fundamental sets of solutions $\{y_1, y_2\}$ to a 2nd Order linear homogeneous ODE on an interval *I* generate all solutions to the ODE on *I*.

ヘロト ヘアト ヘビト ヘビト

Overview Motivating Examples The Wronskian & the Existence of Solutions

The Wronskian & Linear Independence

Theorem (3.2.6, Abel's Theorem)

If y_1 and y_2 are solutions to the 2nd order ODE y'' + p(t)y' + q(t)y = 0, where p and q are continuous on I, then

$$W(y_1, y_2)(t) = c \exp\left(-\int p(t) dt\right),$$

where c is a constant that only depends on y_1 and y_2 . So, $W(y_1, y_2)(t)$ is zero everywhere on I or never zero.

ヘロン 人間 とくほ とくほ とう

Overview Motivating Examples The Wronskian & the Existence of Solutions

The Wronskian & Fundamental Sets of Solutions

Theorem

Suppose that $y_1(t)$ and $y_2(t)$ are solutions to the Linear ODE

$$y'' + p(t)y' + q(t)y = 0.$$

Now suppose

() p and q are continuous at t_0

2 $W(y_1, y_2)(t_0) \neq 0$ (i.e., y_1 and y_2 are lin. indep.)

Then there exist unique constants c_1 and c_2 such that $\phi(t) = c_1 y_1(t) + c_2 y_2(t)$ satisfies the IVP

$$y'' + p(t)y' + q(t)y = 0, \ y(t_0) = y_0, y'(t_0) = y'_0.$$

That is $\{y_1, y_2\}$ forms a fundamental set of solutions.

Overview Motivating Examples The Wronskian & the Existence of Solutions

The Wronskian & Fundamental Sets of Solutions

Moral

If $\{y_1(t), y_2(t)\}$ is a fundamental set of solutions to the 2nd Order Linear Homogeneous ODE

$$y'' + p(t)y' + q(t)y = 0$$

on the interval I. Then every solution to this ODE on I can be expressed as

$$c_1y_1(t) + c_2y_2(t)$$

for some unique choice of real numbers c_1 and c_2 .

・ロン ・雪 と ・ ヨ と

Overview Motivating Examples The Wronskian & the Existence of Solutions

Existence of Fundamental Sets

Theorem (3.2.5)

Consider the 2nd order linear ODE

$$y'' + p(t)y' + q(t)y = 0,$$

where p and q are continuous on some interval I. Choose a point t_0 in I. Let $y_1(t)$ be the solution to the ODE with initial data $y_1(t_0) = 1$ and $y'_1(t_0) = 0$, and let $y_2(t)$ be the solution to the ODE with initial data $y_2(t_0) = 0$ and $y_2(t_0) = 1$. Then $y_1(t)$ and $y_2(t)$ form a fundamental set of solutions for the ODE on the interval I.

ヘロン 人間 とくほ とくほ とう

Overview Motivating Examples The Wronskian & the Existence of Solutions

All of the Solutions

Theorem

Let $\Psi(t)$ be some solution to the 2nd order linear ODE

$$\mathbf{y}'' + \mathbf{p}(t)\mathbf{y}' + \mathbf{q}(t)\mathbf{y} = \mathbf{g}(t), \ \alpha < t < \beta,$$

where p and q are continuous. Let $\{y_1(t), y_2(t)\}$ be a fundamental set of solutions to the associated homogeneous equation. Then all solutions to our ODE on the interval $\alpha < t < \beta$ are of the form

$$\Psi(t) + c_1 y_1(t) + c_2 y_2(t),$$

where c_1 and c_2 are constants.

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Homogeneous Constant Coefficier Positive Discriminant Negative Discriminant Zero Discriminant

Outline

- Second Order Equations
 - Overview
- 2 Theory of Homogeneous Linear ODEs
 - Overview
 - Motivating Examples
 - The Wronskian & the Existence of Solutions
- Solving 2nd Order Linear Homogeneous ODEs
 - Homogeneous Constant Coefficient
 - Positive Discriminant
 - Negative Discriminant
 - Zero Discriminant

ヘロト ヘワト ヘビト ヘビト

The Idea

Homogeneous Constant Coefficient Positive Discriminant Negative Discriminant Zero Discriminant

We showed $\{y_1(t) = e^t, y_2(t) = e^{-t}\}$ is a fundamental set of solutions for y'' - y = 0. How did we get these solutions?

• Assume solution looks like $y(t) = e^{rt}$.

- Then y(t) solves equation if and only if $r^2 1 = 0$. Why?
- Hence, y(t) solves ODE if and only if $r = \pm 1$.
- So e^t and e^{-t} are solutions.
- $W(e^t, e^{-t})(t) \neq 0$ implies fundamental set.

Moral: We reduced solving this const. coeff. equation to finding roots of a quadratic.

イロト 不得 とくほ とくほ とうほ

The Idea

Homogeneous Constant Coefficient Positive Discriminant Negative Discriminant Zero Discriminant

We showed $\{y_1(t) = e^t, y_2(t) = e^{-t}\}$ is a fundamental set of solutions for y'' - y = 0. How did we get these solutions?

- Assume solution looks like $y(t) = e^{rt}$.
- Then y(t) solves equation if and only if $r^2 1 = 0$. Why?
- Hence, y(t) solves ODE if and only if $r = \pm 1$.
- So e^t and e^{-t} are solutions.
- $W(e^t, e^{-t})(t) \neq 0$ implies fundamental set.

Moral: We reduced solving this const. coeff. equation to finding roots of a quadratic.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

In General

Homogeneous Constant Coefficient Positive Discriminant Negative Discriminant Zero Discriminant

Consider that 2nd order homogeneous linear ODE

$$ay''+by'+cy=0.$$

- Assume solution looks like $y(t) = e^{rt}$.
- Then y(t) solves equation if and only if $ar^2 + br + c = 0$.
- Let $\Delta = b^2 4ac$.
- There are three cases for the roots r_1 and r_2 of the characteristic equation.

1)
$$r_1
eq r_2$$
 are real (i.e., $\Delta >$ 0).

- 2) $r_1=
 u+i\mu, r_2=
 u-i\mu$, where $\mu
 eq$ 0 (i.e., $\Delta<$ 0).
- ③ $r_1 = r_2$ real numbers (i.e., $\Delta = 0$).

Homogeneous Constant Coefficient Positive Discriminant Negative Discriminant Zero Discriminant

In General

Consider that 2nd order homogeneous linear ODE

$$ay''+by'+cy=0.$$

- Assume solution looks like $y(t) = e^{rt}$.
- Then y(t) solves equation if and only if $ar^2 + br + c = 0$.
- Let $\Delta = b^2 4ac$.
- There are three cases for the roots *r*₁ and *r*₂ of the characteristic equation.

)
$$\mathit{r}_{1}
eq \mathit{r}_{2}$$
 are real (i.e., $\Delta >$ 0)

- $2 \hspace{0.5cm}$) $r_{1}=
 u+i\mu,r_{2}=
 u-i\mu$, where $\mu
 eq$ 0 (i.e., $\Delta<$ 0).
- \bigcirc $r_1 = r_2$ real numbers (i.e., $\Delta = 0$).

Homogeneous Constant Coefficient Positive Discriminant Negative Discriminant Zero Discriminant

In General

Consider that 2nd order homogeneous linear ODE

$$ay''+by'+cy=0.$$

- Assume solution looks like $y(t) = e^{rt}$.
- Then y(t) solves equation if and only if $ar^2 + br + c = 0$.
- Let $\Delta = b^2 4ac$.
- There are three cases for the roots *r*₁ and *r*₂ of the characteristic equation.

$$old D \hspace{0.1in} r_{1}
eq r_{2}$$
 are real (i.e., $\Delta >$

) $\mathit{r}_1 = \nu + i \mu, \mathit{r}_2 = \nu - i \mu$, where $\mu
eq 0$ (i.e., $\Delta <$ 0).

0).

③ $r_1 = r_2$ real numbers (i.e., $\Delta = 0$).

Homogeneous Constant Coefficient Positive Discriminant Negative Discriminant Zero Discriminant

In General

Consider that 2nd order homogeneous linear ODE

$$ay''+by'+cy=0.$$

- Assume solution looks like $y(t) = e^{rt}$.
- Then y(t) solves equation if and only if $ar^2 + br + c = 0$.
- Let $\Delta = b^2 4ac$.
- There are three cases for the roots *r*₁ and *r*₂ of the characteristic equation.

1
$$r_1 \neq r_2$$
 are real (i.e., $\Delta > 0$).

2)
$$\mathit{r_1} = \nu + i \mu, \mathit{r_2} = \nu - i \mu$$
 , where $\mu
eq 0$ (i.e., $\Delta <$ 0).

3) $r_1 = r_2$ real numbers (i.e., $\Delta = 0$).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Homogeneous Constant Coefficient Positive Discriminant Negative Discriminant Zero Discriminant

In General

Consider that 2nd order homogeneous linear ODE

$$ay''+by'+cy=0.$$

- Assume solution looks like $y(t) = e^{rt}$.
- Then y(t) solves equation if and only if $ar^2 + br + c = 0$.
- Let $\Delta = b^2 4ac$.
- There are three cases for the roots *r*₁ and *r*₂ of the characteristic equation.

1
$$r_1 \neq r_2$$
 are real (i.e., $\Delta > 0$).
2 $r_1 = \nu + i\mu$, $r_2 = \nu - i\mu$, where $\mu \neq 0$ (i.e., $\Delta < 0$).
3 $r_1 = r_2$ real numbers (i.e., $\Delta = 0$).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Homogeneous Constant Coefficient Positive Discriminant Negative Discriminant Zero Discriminant

Case 1: $\Delta > 0$ (Distinct Real Roots)

- $r_1 \neq r_2$ real roots
- $y_1(t) = e^{r_1 t}$ and $y_2(t) = e^{r_2 t}$ solve

$$ay'' + by' + cy = 0.$$

- $W(y_1, y_2)(t) \neq 0$
- So {y₁(t), y₂(t)} forms a fundamental set of solutions
- $\phi(t) = c_1 y_1(t) + c_2 y_2(t)$ is the general solution.

イロン 不得 とくほ とくほ とうほ

Homogeneous Constant Coefficient Positive Discriminant Negative Discriminant Zero Discriminant

Case 1: $\Delta > 0$ (Distinct Real Roots)

Solve the following IVPs

1
$$y'' + 9y' + 20y = 0, y(1) = 3, y'(1) = 0.$$

2
$$y'' - 20y' + 42y = 0$$
, $y(2) = 3$, $y'(2) = 5$.

3
$$y'' + 12y' + 9y = 0$$
, $y(-1) = 9$, $y'(-1) = 2$.

イロト 不得 とくほと くほとう

3

Homogeneous Constant Coefficient Positive Discriminant Negative Discriminant Zero Discriminant

Case 2: $\Delta < 0$ (Imaginary Roots)

First we recall a few things

- $i = \sqrt{-1}$
- $z = \nu + i\mu$ is a complex number
- (Euler's Formula) $e^{it} = \cos(t) + i\sin(t)$

•
$$e^{\nu+i\mu} = e^{\nu}e^{i\mu} = e^{\nu}(\cos(\mu) + i\sin(\mu))$$

• If z and w are complex numbers then $e^{z+w} = e^z e^w$.

•
$$y(t) = e^{zt}$$
, then $y'(t) = ze^{zt}$.

イロト 不得 とくほ とくほ とうほ

Homogeneous Constant Coefficient Positive Discriminant Negative Discriminant Zero Discriminant

Case 2: $\Delta < 0$ (Imaginary Roots)

Now since $\Delta < 0$ we have:

- $r_1 = \nu + i\mu$ and $r_2 = \nu i\mu$ with $\mu \neq 0$.
- $\tilde{y}_1(t) = e^{r_1 t}$ and $\tilde{y}_2(t) = e^{r_2 t}$ solve

$$ay''+by'+cy=0.$$

- $W(\tilde{y}_1, \tilde{y}_2)(t) \neq 0$
- So $\{\tilde{y}_1(t), \tilde{y}_2(t)\}$ forms a fundamental set of solutions
- But \tilde{y}_1 and \tilde{y}_2 are not real-valued functions.

<ロ> <四> <四> <四> <三</td>

Homogeneous Constant Coefficient Positive Discriminant Negative Discriminant Zero Discriminant

Case 2: $\Delta < 0$ (Imaginary Roots)

However

- $y_1(t) = \frac{1}{2}\tilde{y}_1(t) + \frac{1}{2}\tilde{y}_2(t) = e^{\nu t}\cos(\mu t)$
- $y_2(t) = \frac{1}{2i}\tilde{y}_1(t) \frac{1}{2i}\tilde{y}_2(t) = e^{\nu t}\sin(\mu t)$

are real-valued solutions. In fact,

 $W(y_1,y_2)(t)\neq 0.$

Hence, $\{e^{\nu t}\cos(\mu t), e^{\nu t}\sin(\mu t)\}$ is a fundamental set of solutions.

・ロト ・ 理 ト ・ ヨ ト ・

Homogeneous Constant Coefficient Positive Discriminant Negative Discriminant Zero Discriminant

Case 2: $\Delta < 0$ (Imaginary Roots)

Solve the following IVPs:

1
$$y'' + 16y = 0, y(\pi/2) = 1, y'(\pi/2) = 0.$$

2
$$y'' + 2y' + y = 0$$
, $y(0) = 1$, $y'(0) = 3$.

3
$$3y'' + 4y' + 3y = 0$$
, $y(-\pi/4) = 3$, $y'(-\pi/4) = 2$.

イロト 不得 とくほと くほとう

3

Homogeneous Constant Coefficient Positive Discriminant Negative Discriminant Zero Discriminant

Case 3: $\Delta = 0$ (Repeated Real Roots)

•
$$r_1 = r_2 = -\frac{b}{2a}$$
 are real.

- $y_1(t) = e^{r_1 t}$ is a solution, but we need another.
- Suppose $y(t) = v(t)y_1 = v(t)e^{-bt/2a}$ is a solution.

Then

$$y'_{2}(t) = v'(t)e^{-bt/2a} - \frac{b}{2a}v(t)e^{-bt/2a}$$

and

$$y_2''(t) = v''(t)e^{-bt/2a} - \frac{b}{a}v'(t)e^{-bt/2a} + \frac{b^2}{4a^2}v(t)e^{-bt/2a}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Homogeneous Constant Coefficient Positive Discriminant Negative Discriminant Zero Discriminant

Case 3: $\Delta = 0$ (Repeated Real Roots)

Use the differential Eq. to see

$$\mathbf{v}''(t)=\mathbf{0}.$$

- Hence $v(t) = c_1 t + c_2$
- $y(t) = c_1 t e^{-bt/2a} + c_2 e^{-bt/2a}$.
- $W(e^{-bt/2a}, te^{-bt/2a})(t) = e^{-bt/2a}$
- Hence, {e^{-bt/2a}, te^{-bt/2a}} forms a fundamental set of solutions our ODE.
- This is an example of the method of Reduction of Order

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Homogeneous Constant Coefficient Positive Discriminant Negative Discriminant Zero Discriminant

Case 3: $\Delta = 0$ (Repeated Real Roots)

Solve the following IVPs:

1
$$y'' - y' + 0.25y = 0, y(0) = 2, y'(0) = \frac{1}{3}.$$

2
$$y'' + 8y' + 8y = 0$$
, $y(1) = 3y'(1) = -2$.

3
$$y'' - 6y' + 9y = 0$$
, $y(-2) = 3 y'(-2) = 3$.

イロト 不得 とくほと くほとう

3

Homogeneous Constant Coefficient Positive Discriminant Negative Discriminant Zero Discriminant

Case 3: $\Delta = 0$ (Repeated Real Roots)

Here's another way to find the fundamental set of solutions in this case:

- Let $L = a \frac{d^2}{dy^2} + b \frac{d}{dy} + c$ and assume $ar^2 + br + c = 0$ has a repeated root r_1 .
- Then

$$L(e^{rt}) = a(r-r_1)^2 e^{rt}$$

it equals zero if and only if $r = r_1$.

• So, as before, $y_1(t) = e^{r_1 t}$ is a solution.

ヘロト 人間 とくほとく ほとう

Homogeneous Constant Coefficient Positive Discriminant Negative Discriminant Zero Discriminant

Case 3: $\Delta = 0$ (Repeated Real Roots)

Now

$$\frac{\partial}{\partial r}L(e^{rt}) = L(\frac{\partial}{\partial r}e^{rt}) = L(te^{rt}) = ate^{rt}(r-r_1)^2 + 2ae^{rt}(r-r_1).$$

- Conclude that $te^{r_1 t}$ is a solution to L(y) = 0.
- So, $y_1(t) = e^{r_1 t}$ and $y_2(t) = t e^{r_1 t}$ are solutions.
- As before, by computing the Wronskian, we see they form a fundamental set of solutions.
- See Problems 3.4.20 & 3.4.21 for additional ways of seeing this.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・