Math 23 Fall 2014

Differential Equations

Final Exam

Friday, November 21, 3:00PM - 6:00PM

Your name (please print): \qquad

Section (circle one): Olivia Prosper, Min Hyung Cho

Instructions: This is a closed book, closed notes exam. The use of calculators is not permitted. The exam consists of $\mathbf{9}$ problems and this booklet contains $\mathbf{1 5}$ pages (including this one). On problems 2 through 9 , you must show your work and justify your assertions to receive full credit. Justify your answers and simplify your results as much as possible. Also, please clearly mark your final (simplified) answer. The last two pages of this booklet are blank. Good Luck!

The Honor Principle requires that you neither give nor receive any aid on this exam.

Math 23 Fall 2014

Your name (please print):

Problem	Points	Score
1	10	
2	6	
3	10	
4	12	
5	10	
6	20	
7	11	
8	10	
9	11	
Total	$\mathbf{1 0 0}$	

Work will not be graded in this page

1. Short Answer Questions $((a) \sim(b))$-Work will not be graded
(a) (5 points) Consider a uniform rod of length π for which $\alpha^{2}=1$. Then, the temperature of the rod follows

$$
u_{t}=u_{x x}, \quad 0<x<\pi .
$$

Suppose the initial temperature is given by $u(x, 0)=\sin x+\cos x$ and both ends of the rod are insulated. Find the steady state temperature in the bar.

Answer: \qquad
(b) (5 points) Determine the lower bound for the radius of convergence of the power series solution near $x_{0}=1$ of the differential equation

$$
\left(x^{2}+4\right)(x+2) y^{\prime \prime}+(x-2) y^{\prime}-x^{2} y=0 .
$$

Answer: $\rho=$ \qquad

Show your work

2. (6 points) Determine whether the following set of vectors is linearly independent or linearly dependent:

$$
\vec{v}_{1}=\left(\begin{array}{c}
1 \\
3 \\
-1 \\
0
\end{array}\right), \vec{v}_{2}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right), \vec{v}_{3}=\left(\begin{array}{c}
1 \\
5 \\
-1 \\
2
\end{array}\right)
$$

Answer: \qquad

Show your work

3. ($\mathbf{1 0}$ points) Find an explicit solution of the initial value problem.

$$
\frac{d P}{d t}=(1-P) P, P(0)=\frac{1}{2}
$$

Answer: $P(t)=$
4. (12 points) Determine if $f(x)=e^{-x}$ and $g(x)=-x+1$ are orthogonal on $[0, \infty)$ and justify.

Answer: \qquad

Show your work

5. (10 points) Seek a power series solution (find a recurrence relation) of

$$
y^{(3)}+y^{\prime}=0
$$

near $x_{0}=0$ by assuming a_{0}, a_{1}, and a_{2} are arbitrary constants.

Answer: $a_{n+3}=$

Show your work

6. An engineer attempts to take damping into account in the vibrating string problem by using the following partial differential equation and boundary conditions.

$$
\begin{cases}u_{t t}=u_{x x}-2 u_{t} & 0<x<\pi, t>0 \\ u(0, t)=u(\pi, t)=0 & t \geq 0 \\ u_{t}(x, 0)=\sin 2 x & 0 \leq x \leq \pi \\ u(x, 0)=0 & 0 \leq x \leq \pi\end{cases}
$$

(a) (10 points) Use separation of variables $u(x, t)=X(x) T(t)$ to find a set of two second order differential equations satisfied by X and T. Please specify the boundary condition for X.

Answer: Equation for X : \qquad
Answer: Boundary conditions for X : \qquad
Answer: Equation for T : \qquad
Part (b) next page \rightarrow

Show your work

(b) ($\mathbf{1 0}$ points) Find the displacement $u(x, t)$

Answer: $u(x, t)=$

Show your work

7. (a) (2 points) Draw the graph of

$$
f(x)=\left\{\begin{array}{l}
0,-\pi<x \leq-\pi / 2 \\
-2,-\pi / 2<x \leq 0 \\
2,0<x \leq \pi / 2 \\
0, \pi / 2<x \leq \pi
\end{array} \quad, f(x+2 \pi)=f(x)\right.
$$

Part (b) next page \rightarrow

Show your work

(b) (9 points) Find the Fourier series of $f(x)$.

Answer: $f(x)=$

Show your work

8. (10 points) Either solve the boundary value problem, or show that it has no solution.

$$
y^{\prime \prime}+5 y=\cos (x), y^{\prime}(0)=0, y\left(\frac{\pi}{\sqrt{5}}\right)=0 .
$$

Answer:

Show your work

9. (11 points) Solve the differential equation $\vec{x}^{\prime}=A \vec{x}$, where $A=\left(\begin{array}{ll}5 & -3 \\ 3 & -1\end{array}\right)$.

Answer: $\vec{x}=$

Extra page for scratch work. I will not grade work on this page unless you write on another page "problem continued on page 14 ".

Extra page for scratch work. I will not grade work on this page unless you write on another page "problem continued on page 15 ".

