
Final Exam

Math 23 — Winter 2014

Name:

Section: 11 12

This exam has 11 questions on 16 pages, for a total of 250 points.

You have 180 minutes to answer all questions.

This is a closed book exam.

Use of calculators and other electronic devices is not permitted.

Show all your work, justify all your answers.
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Question Points Score

1 20

2 25

3 20

4 35

5 20

6 20

7 20

8 30

9 20

10 20

11 20

Total: 250
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1.20 Find the general solution to the differential equation

2y′ + y = 3t
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2.25 Solve the following boundary value problem.

x2y′′ − 2xy′ + 2y = 0, y(1) = −1, y(2) = 1
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3.20 (a) Find the Fourier series for f(x) =

{
−1 −π < x < 0

1 0 < x < π
.

Reduce your answer as much as possible.

(b) Graph the function to which the series converges for three periods.
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4.35 Consider a rod of length 20 cm. that is initially at the uniform temperature of 25◦ C.
Suppose that at time 0 the end x = 0 is cooled to 0◦C. and the end x = 20 is heated to
60◦C. and both remain at those temperatures thereafter. Further suppose that the rod
is made of a material so that α2 = 1.5 cm2/s.

(a) Set up the heat conduction problem, that is, state the differential equation, initial
conditions, and boundary conditions.

(b) Find the steady state solution for this problem.
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(c) Find the temperature distribution in the rod at any time t.
Reduce your answer as much as possible.
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5.20 Find the solution to the initial value problem

(3x2 − 2xy + 2)dx+ (6y2 − x2 + 3)dy = 0, y(−2) = 2

You may leave your answer in implicit form.
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6.20 Find the general solution to the differential equation

y′′ + 2y′ = 4 sin(2t)
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7.20 Consider the wave equation problem

9uxx = utt

u(0, t) = u(4, t) = 0

u(x, 0) = 0

ut(x, 0) =

{
3x, 0 < x < 1

4− x, 1 < x < 4

Find the form of a series solution for u(x, t) and give an integral formula for the coeffi-
cients of the series.

Leave your formula in integral form, do not attempt to solve for the coefficients.
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8.30 Find the general solution to ~x ′ =

(
5 −1
3 1

)
~x and determine for which values of a the

solution with initial value ~x(0) =

[
1
a

]
does x1(t)→ +∞ as t→ +∞.
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9.20 For each fundamental set of solutions {~x1, ~x2} to a system ~x ′ = A~x below, sketch in a
phase plane (i.) the solution curves ~x1, ~x2; (ii.) the solution to the initial value problem

~x ′ = A~x, ~x(0) =

[
2
−3

]

(a) ~x1 =

[
e5t

−3e5t

]
, ~x2 =

[
4et

et

]

(b) ~x1 =

[
et

3et

]
, ~x2 =

[
e−2t

−e−2t
]
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10.20 Let x1(t) be the population of Gwalia and x2(t) be the population of Albion at time t,
measured in years. Each year in both countries 2% of the population has a baby, and
1.5% of the population dies. In addition, 5% of the population of Gwalia emigrates to
Albion, and 10% of the population of Albion emigrates to Gwalia. There is no other
immigration or emigration.

Write a system of two differential equations for this situation, and express it as a matrix
equation.
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11.20 The system of differential equations ~x′ = A~x has fundamental matrix

X(t) =

(
3et (3t− 1)et

et (t+ 3)et

)
Calculate eAt.
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Scratch work. Refer to this on the question’s page if you want it to be graded.
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Scratch work. Refer to this on the question’s page if you want it to be graded.
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