## MATH 23 - DIFFERENTIAL EQUATIONS, SPRING 2011 FINAL

PRINT NAME:
SECTION:
(1) A. Find the first 3 nonzero terms of series solutions corresponding to the larger root of the indicial equation at the regular singular point $x=0$ of the differential equation:
$x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1\right) y=0$
B. extra credit: This is Bessel's equation of order 1. What does it have to do with the wave equation? (No more than 2 sentences, please!)

[^0](2) Consider the equation of a vibrating string of length 10 with fixed ends at 0 and 10:
$$
u_{x x}=u_{t t}
$$

Find the first three nonzero terms of the Fourier series for $u$, given that $u(x, 0)=0$ and $u^{\prime}(x, 0)=f(x)$ where $f(x)=1$ if $1<x<9$ and $f(x)=0$ otherwise.
(3) Consider the system of equations:

$$
x^{\prime}=-2 x+B y
$$

$$
y^{\prime}=x+y
$$

A. For what values of $B$ does the solution have decreasing oscillations?
B. Find the general solution to the system of equations in terms of real valued functions when $B=25 / 4$.
(4) Find all critical points of the following nonlinear system. For each critical point, linearize the system, find the eigenvalues, and indicate whether the equilibrium is stable or unstable.

$$
\begin{aligned}
& x^{\prime}(t)=x y-8 \\
& y^{\prime}(t)=(x+2)(y-4)
\end{aligned}
$$


[^0]:    Date: June 4, 2011.

