23F04	Midterm	Exam Time: Wednesday November 3rd, 10.00-11.05
Name:		Student No.:

Instructions:

- Answer ALL questions from Section A
- You may use a handwritten sheet of notes. Calculators are NOT permitted.
- Read all questions carefully
- Unless explicitly told otherwise, you should explain all your answers fully.
- Do NOT seperate the pages of your exam.

Section A: Answer ALL questions.

Problem A1: $[10 \mathrm{pts}]$ Find an explicit solution to the initial value problem

$$
\left\{\begin{array}{l}
t y^{\prime}+2 y=t^{2}-3 t \\
y(1)=-1
\end{array}\right.
$$

Solution:

Divide through by t to put the equation in standard form.

$$
y^{\prime}+\frac{2}{t} y=t-3
$$

Then $p(t)=2 / t$ and the integrating factor is $R(t)=t^{2}$. The equation then becomes

$$
\left(t^{2} y\right)^{\prime}=t^{3}-3 t^{2}
$$

Integrating

$$
t^{2} y=\frac{t^{4}}{4}-t^{3}+C
$$

Thus the general solution is

$$
y=\frac{t^{2}}{2}-t+C t^{-2}
$$

Setting $y(1)=-1$ we see that $C=-\frac{1}{4}$ and so the solution to the IVP is

$$
y=\frac{t^{2}}{2}-t-\frac{1}{4 t^{2}}
$$

Name:

Problem A2: $[10 \mathrm{pts}]$ Find the general solution to the equation

$$
y^{\prime \prime}+y^{\prime}-2 y=2 e^{t}
$$

Solution:

The characteristic polynomial for ODE is

$$
r^{2}+r-2=(r+2)(r-1)=0
$$

which has roots $r=1,-2$. The general solution to the homogeneous equation $y^{\prime \prime}+y^{\prime}-2 y=0$ is thus

$$
y=A e^{t}+B e^{-2 t}
$$

Since e^{t} occurs in the homogeneous solution when choosing a form for the particular solution we must guess $Y(t)=C t e^{t}$. Then $Y^{\prime}=(C+C t) e^{t}$ and $Y^{\prime \prime}=(2 C+C t) e^{t}$. Plugging Y into the equation we then get

$$
(2 C+C) e^{t}+(C+C-2 C) t e^{t}=2 e^{t}
$$

Thus $C=\frac{2}{3}$ and the general solution to the ODE is

$$
y(t)=A e^{t}+B e^{-2 t}+\frac{2}{3} t e^{t} .
$$

Problem A3: $[10=8+2 \mathrm{pts}]$ Consider the system of first order linear equations given by

$$
\boldsymbol{x}^{\prime}=\left(\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right) \boldsymbol{x}
$$

(a) Find the general solution to the differential equation.

Solution:

First we find the eigenvalues

$$
\operatorname{det}\left(\begin{array}{cc}
3-r & -2 \\
2 & -2-r
\end{array}\right)=(3-r)(-2-r)+4=r^{2}-r-2=(r-2)(r+1)
$$

Thus the matrix has eigenvalues -1 and 2 .
For $r=-1,\left(\begin{array}{cc}3+1 & -2 \\ 2 & -2+1\end{array}\right)=\left(\begin{array}{cc}4 & -2 \\ 2 & -1\end{array}\right)$ has eigenvector $\boldsymbol{x}_{1}=\binom{1}{2}$.
For $r=2,\left(\begin{array}{cc}3-2 & -2 \\ 2 & -2-2\end{array}\right)=\left(\begin{array}{cc}1 & -2 \\ 2 & -4\end{array}\right)$ has eigenvector $\boldsymbol{x}_{2}=\binom{2}{1}$.
The general solution is then

$$
\boldsymbol{x}(t)=c_{1}\binom{1}{2} e^{-t}+c_{2}\binom{2}{1} e^{2 t}
$$

(b) For this system is the critical point at $\mathbf{0}$ stable, asymptotically stable or unstable?

Solution:

One of the eigenvalues is positive so the critical point is unstable.

Name:
Problem A4: [10 pts] Use the method of variation of parameters to find the general solution to the
ODE

$$
y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{t}}{1+t^{2}}
$$

Solution:

The characteristic polynomial is $r^{2}-1=0$ which has a repeated root of $r=1$. The pair $\left\{e^{t}, t e^{t}\right\}$ is then a fundamental set of solutions.

The method of variation of parameters tells us to construct a solution $y=u_{1}(t) e^{t}+u_{2}(t) t e^{t}$ where u_{1} and u_{2} satisfy the system

$$
\begin{aligned}
u_{1}^{\prime} e^{t}+u_{2}^{\prime} t e^{t} & =0 \\
u_{1}^{\prime} e^{t}+u_{2}^{\prime}(1+t) e^{t} & =\frac{e^{t}}{1+t^{2}}
\end{aligned}
$$

Subtracting the first from second yields that $u_{2}^{\prime} e^{t}=\frac{e^{t}}{1+t^{2}}$ and so $u_{2}^{\prime}=\frac{1}{1+t^{2}}$ and $u_{2}=\tan ^{-1} t+C_{2}$. Substituting back in we see that $u_{1}^{\prime}=-\frac{t}{1+t^{2}}$ and so $u_{1}=-\frac{1}{2} \ln \left(1+t^{2}\right)+C_{1}$. Thus the general solution is

$$
y=C_{1} e^{t}+C_{2} t e^{t}+\left(\tan ^{-1} t\right) t e^{t}-\frac{1}{2} \ln \left(1+t^{2}\right) e^{t}
$$

Problem A5: $[10=5+5 \mathrm{pts}]$ The following is a plot of $f(y)$ versus y.

(a) Suppose $y(t)$ is a solution to the IVP $\left\{\begin{array}{l}y^{\prime}=f(y), \\ y(0)=2 .\end{array}\right.$ Find $\lim _{t \rightarrow \infty} y(t)$.

Solution:

The ODE has critical points at $y=0,1,3$, 4. In the range $1<y<3$ the function $f(y)<0$. Therefore this solution $y(t)$ will approach the critical point at $y=1$. Thus

$$
\lim _{t \rightarrow \infty} y(t)=1
$$

(b) The ODE $y^{\prime}=f(y)$ is used to model the population of a species of insect where y is measured in thousands. Since this is a physical situation, the actual size of the population will suffer from small random fluctuations. What size of initial population is needed to prevent eventual extinction of the species?

Solution:

The critical points can be classified as follows. $y=0$ is stable (it represents extinction and negative y values don't make sense here). $y=1$ is semi-stable and we would expect random fluctuations to cause solutions near this value to eventually sink below it. $y=3$ is unstable. $y=4$ is stable. Any initial population with $y(0)<3$ will eventually become extinct as it will in the long term cross the semi-stable critical point. $y(0)=3$ is undetermined - we cannot tell if it will fluctuate up or down. Thus we require $y(0)>3$

