
Selected answers to suggested problems: 5.1, 5.2

5.1

2. (b) T (3 + 4x) = −2(3 + 4x), T (2 + 3x) = −3(2 + 3x), so both are
eigenvectors (and a basis) and

[T ]β =

(
−2 0
0 −3

)
.

(d) T (x − x2) = −4(−1 − x + x2), T (−1 + x2) = −2(−1 + x2),
T (−1− x + x2) = 3(x− x2). This is not a basis of eigenvectors;

[T ]β =

 0 0 3
0 −2 0
−4 0 0

 .

(f) T

(
1 0
1 0

)
= −3

(
1 0
1 0

)
, T

(
−1 2
0 0

)
=

(
−1 2
0 0

)
,

T

(
1 0
2 0

)
=

(
1 0
2 0

)
, and T

(
−1 0
0 2

)
=

(
−1 0
0 2

)
, so this

is a basis of eigenvectors, and

[T ]β =


−3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

3. (b) (i) eigenvalues 1, 2, 3

(ii) E1 =


 −z
−z
z

 : z ∈ R

. E2 =


 x
−x
0

 : x ∈ R

.

E3 =


 x

0
−x

 : x ∈ R

 .

(iii) One possible basis is {(1, 1,−1), (1,−1, 0), (1, 0,−1)}.

(iv) Q =

 1 1 1
−1 −1 0
−1 0 −1

. D =

 1 0 0
0 2 0
0 0 3

.

(d) (i) eigenvalues 0, 1, 1
1
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(ii) E0 =


 1

2
z

−6z
z

 : z ∈ R

. E1 =


 0

y
0

 : y ∈ R

.

(iii) Not possible; E1 is not of large enough dimension.

4. (c) Matrix representation of T in terms of the standard ordered
basis is  −4 3 −6

6 −7 12
6 −6 11

 .

Determinant of [T ]− tI is 2 + 3t− t3; eigenvalues 2,−1,−1.

E2 =


 1

2
z
z
z

 : z ∈ R

 . E−1 =


 y + 2z

y
z

 : y, z ∈ R

 .

One possible basis: {−1
2
, 1, 1), (1, 1, 0), (2, 0, 1)}.

(d) Matrix representation of T in terms of standard ordered basis
({1, x}) is (

1 −6
2 −6

)
.

Determinant of [T ]− tI is 6 + 5t + t2; eigenvalues −2,−3.

E−2 =

{(
2y
y

)
: y ∈ R

}
. E−3 =

{(
3a
2a

)
: a ∈ R

}
.

One possible basis: {2 + x, 3 + 2x}.

(e) Matrix representation of T in terms of standard ordered basis
({1, x, x2}) is  1 3 9

1 3 4
0 0 2

 .

Determinant of [T ]− tI is −8t + 6t2 − t3; eigenvalues 0, 2, 4.

E0 =


 −3y

y
0

 : y ∈ R

 . E2 =


 −3a
−13a
4a

 : a ∈ R

 .

E4 =


 x

x
0

 : x ∈ R

 .
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One possible basis: {−3 + x,−3− 13x + 4x2, 1 + x}.

(g) Matrix representation of T in terms of standard ordered basis
({1, x, x2, x3}) is 

−1 −2 −2 −8
0 1 0 6
0 0 2 0
0 0 0 3

 .

Eigenvalues can be read off: −1, 1, 2, 3.

E−1 =




x
0
0
0

 : x ∈ R

 . E1 =




x
−x
0
0

 : x ∈ R

 .

E2 =



−2a
0
3a
0

 : a ∈ R

 . E3 =



−7a
6a
0
2a

 : a ∈ R

 .

One possible basis: {1, 1− x,−2 + 3x2,−7 + 6x + 2x2}.

10. (a) λIV is the linear transformation which takes every vector to
the λ-multiple of itself, in particular the vectors of any basis β.

(b) If V is of dimension n, the characteristic polynomial of λIV is
(λ− t)n.

(c) Since the characteristic polynomial of λIV has only one distinct
root, λIV has only one eigenvalue. It is diagonalizable because any
basis of V is a basis of eigenvectors for λIV .

11. (a) To be similar to λI is to be B−1λIB for some invertible B.
However, B−1λIB = B−1(λB) = λ(B−1B) = λI, so every matrix
similar to λI is λI.

(b) If a matrix is diagonalizable, it is similar to a diagonal matrix
which has the matrix’s eigenvalues as its diagonal entries. If the matrix
has only one eigenvalue, the diagonal matrix is a scalar matrix, so by
part (a) the original matrix must already be a scalar matrix.

(c) The given matrix has characteristic polynomial (1− t)2, so it has
only one eigenvalue. However, it is not a scalar matrix, so by part (b)
it is not diagonalizable.

14. Since subtracting tI affects only the diagonal elements, which are
the same between A and At, we have det(A − tI) = det((A − tI)t) =
det(At − tI), so they have the same characteristic polynomial.
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15. (a) For any m, Tm(x) = Tm−1T (x) = Tm−1(λx) = λTm−1(x), so
by induction we get Tm(x) = λmx.

(b) The eigenvalues of the powers of a matrix A are the corresponding
powers of the eigenvalues of A.

17. (a) T leaves the diagonal of a matrix unchanged, so on matrices
with nonzero diagonal elements, it can clearly have no other eigenvalue
than 1. This is indeed an eigenvalue, with eigenvectors the symmetric
matrices.

If the diagonal of a matrix is all zero and the matrix is not symmetric,
for λ to be an eigenvalue of T we need aij = λaji for all i 6= j. To have
aij = λaji as well as aji = λaij requires λ = ±1. We have seen 1 is
an eigenvalue. −1 is as well, with eigenvectors the matrices with zero
along the diagonal and all other symmetric pairs of entries different by
a factor of −1.

(b) done

(c)

{(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 1
1 0

)
,

(
0 1
−1 0

)}
.

(first three go with 1, last with −1.)
(d) n matrices with a single 1 somewhere along the diagonal and

other entries 0, 1
2
(n2 − n) matrices with a pair of symmetric 1s and 0s

elsewhere, 1
2
(n2−n) matrices with a pair 1, −1 in symmetric positions

and 0s elsewhere.

19. This is essentially working backwards through section 2.5. If A
and B are similar, there is some invertible Q such that Q−1AQ = B.
Viewing A as [T ]β for β the standard basis we can consider Q to be a
change-of-coordinate matrix from the columns of Q, which we call γ,
to β. With that interpretation B = [T ]γ.

22. g(T ) means plug T into g; for example, if g(u) = 2u2 + u + 5 the
resulting linear transformation is 2T 2 + T + 5IV , where T 2 means T
composed with itself and IV is T 0. We will show that the result holds
for the powers of u and then that it is preserved under addition and
scalar multiplication.

If g(u) = 1, then g(T ) = IV and g(λ) = 1, so g(T )(x) = IV (x) =
x = 1x = g(λ)x. If g(u) = un for some n > 0, then g(λ) = λn and
g(T ) = T n. By exercise 15, T n(x) = λnx, so g(T )(x) = g(λ)x.

Now suppose the result holds for g(u), h(u) and consider g + h. (g +
h)(T )(x) = (g(T ) + h(T ))(x) = g(T )(x) + h(T )(x) = g(λ)x + h(λ)x =
(g(λ) + h(λ))x = (g + h)(λ)x.

Finally consider h = cg, where the result holds for g. h(T )(x) =
cg(T )(x) = cg(λ)x = h(λ)x.
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5.2

2. (b) Q =

(
1 1
−1 1

)
, D =

(
−2 0
0 4

)
.

(d) Q =

 1 0 1
1 0 2
0 1 3

2

, D =

 3 0 0
0 3 0
0 0 −1

.

(f) Not diagonalizable - eigenvalues 1, 1, 3; E1 has dimension 1.

3. (b) {1− x2, 1 + x2, x} (first with eigenvalue −1, last two with 1)

(e) {(1, 1), (1,−1)} (first with eigenvalue 1 + i, second with 1− i)

(f)

{(
0 1
1 0

)
,

(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 1
−1 0

)}
(first three with eigenvalue 1, last with −1)

8. The dimension of any eigenspace is at least 1, by definition of eigen-
value. Therefore since dim(Eλ1) = n − 1 and dim(Eλ2) ≥ 1 (in fact it
must be equal to 1), A is diagonalizable.

9. (a) The characteristic polynomial of an n×n upper triangular matrix
with diagonal elements a1, a2, . . . , an is (a1− t)(a2− t) . . . (an− t), and
T has the same characteristic polynomial no matter what basis its
matrix representation is with respect to. Therefore the characteristic
polynomial for T splits.

(b) If A is similar to an upper triangular matrix, then the character-
istic polynomial of A splits.

10. Again, the key is that the characteristic polynomial is the same no
matter what the basis is, and that an upper triangular matrix gives a
characteristic polynomial of (a1− t)(a2− t) . . . (an− t) where ai are the
diagonal entries. Therefore, since we know the characteristic polyno-
mial is (λ1 − t)m1(λ2 − t)m2 . . . (λk − t)mk , we know the entries of the
diagonal are mi copies each of λi.

13. (a) Let A =

(
1 1
0 2

)
, a matrix over R. Its eigenvalues are 1 and 2.

A’s eigenspaces are E1 =

{(
0
y

)
: y ∈ R

}
and E2 =

{(
x
x

)
: x ∈ R

}
.

At’s eigenspaces, on the other hand, are E ′
1 =

{(
x
−x

)
: x ∈ R

}
and E ′

2 =

{(
0
y

)
: y ∈ R

}
.
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(b) The dimension of Eλ is n − rank(A − λI), and that of E ′
λ is

n− rank(At − λI). As in 5.1#14, (A− λI)t = (At − λI), so they have
the same rank.

(c) Follows immediately from (b), since A diagonalizable means A
has eigenvalues all of which have eigenspace dimension equal to their
multiplicities. Since At has the same eigenvalues with the same multi-
plicities as A, its eigenspaces also have maximal dimension.


