Math 24 Spring 2006 Assignment 1 Key

Due Friday, April 7.
(1) Is $\ln x$ (natural logarithm) a linear transformation on the vector space \mathbb{R} ? Justify your answer.

Answer: No, it is not. A linear transformation must commute with the vector operations of addition and scalar multiplication, and it is not the case that $\ln (x+y)=$ $\ln x+\ln y$ or that $\ln (c x)=c \ln x$.
(2) Define the operation $*$ on $\mathbb{R}^{>0}$ (positive real numbers) by

$$
a * b=\sqrt{a b}
$$

Is $\left(\mathbb{R}^{>0}, *\right)$ a group? If not, which of the group axioms fails?
Answer: $\left(\mathbb{R}^{>0}, *\right)$ is not a group. There is no identity element, because for a given a the element b which gives $a * b=a$ is a itself, which means there is no single element which works for all a. Therefore there also cannot be inverses. In fact, this operation is not even associative: the only time $a *(b * c)=(a * b) * c$ is when $a=c$.
[all three axiom failures not required; one is sufficient.]
(3) Define the operation $*$ on $2 \mathbb{Z}=\{2 n: n \in \mathbb{Z}\}$ by

$$
a * b=a+b
$$

Is $(2 \mathbb{Z}, *)$ a group? If not, which of the group axioms fails?
Answer: $(2 \mathbb{Z}, *)$ is a group.
[unneeded but probably commonly-given information: the operation is closed because the sum of two even numbers is even. It is associative because it is just ordinary addition. The identity is $0=2 \cdot 0$ and the inverse of $2 n$ is $-2 n=2(-n)$.]
(4) Consider the field $(\{0,1,2\},+\bmod 3, \cdot \bmod 3)$ similar to one discussed in class. Show that for all a, b in the field,

$$
(a+b)^{3}=a^{3}+b^{3}
$$

Answer: If we expand the binomial, we get

$$
(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}
$$

Since we are working mod 3 , the middle two terms are equal to zero no matter what a and b are, so the right hand side simplifies to $a^{3}+b^{3}$.

