
Selected Answers to 1.6 and 2.1 Assignments
Math 24, Spring 2006

Section 1.6

2(a,b): (a) yes, (b) no

3(a,b): (a) no, (b) yes

5: no, it is too big

11: a matter of showing linear independence. For {uv, au}, if you set up the equation
c(u + v) + d(au) = 0 , after rearranging you get that since u, v are linearly independent,
the values c + da and c must be zero. Since c is zero and a is nonzero, that means d must
also be zero and the only representation of 0 is the trivial one. {au, bv} is even more
straightforward, still using the fact that both a and b are nonzero.

12: This is like 11. If you call the coefficients of the linear combination a, b, c, you get
c = 0 which implies b = 0 which together imply a = 0.

14: For W1, a2 and a5 are independent of the rest of the values, so (0, 1, 0, 0, 0), (0, 0, 0, 0, 1)
are basis vectors. For 1, 3, 4, we have to account for the interaction: if two are assigned
values the third one is as well. In particular, if a1 is 0, then a3, a4 are either 1,−1 or
−1, 1 (or some multiple thereof). We need only one of those: (0, 0, 1,−1, 0). If a1 = 1,
then a4 = 1 − a3, giving us vectors such as (1, 0, 1, 0, 0), (1, 0, 0, 1, 0), (1, 0,−1, 2, 0), etc.
Any one of those is an acceptable choice, though, because combined with (0, 0, 1,−1, 0) it
gives all the rest. Thus {(0, 1, 0, 0, 0), (0, 0, 0, 0, 1), (0, 0, 1,−1, 0), (1, 0, 1, 0, 0)} is a basis
and dim(W1) = 4. That should make sense because instead of being able to deal with all
five entries independently, fixing four of them (as long as that four includes both a2 and
a5) fixes the fifth as well.

For W2 basis elements are (0, 1, 1, 1, 0) and (1, 0, 0, 0,−1) and the dimension is 2. Again,
should make sense because if you pick the right two elements, fixing two elements fixes
all the elements.

15: From the standard basis for Mn×n(F ) we may keep the elements which have all zeros
on the diagonal, since they have trace equal to zero. The standard basis has n2 elements
and we remove the n of them which have nonzero diagonal entries, leaving n2 − n.

For the rest of the basis, consider the matrices which are all zero except for two entries:
a 1 in the top left corner and a -1 somewhere else along the diagonal. They have trace zero
and there are n− 1 of them; additionally they are linearly independent of each other and
the basis elements above. We claim these generate all the diagonal zero trace matrices
and hence with the basis elements above are a basis for all the zero trace matrices.

It should be clear that if we took every possible pair of diagonal entries and assigned
1 to one and −1 to the other, that set of matrices generates all the diagonal zero trace
matrices, so we will simply show our set generates this set. Suppose M has a 1 in the ith

diagonal entry and a −1 in the jth diagonal entry. If either of i, j is 1 we are finished, so
suppose neither is. Let Mi be the matrix with entry 1, 1 equal to 1 and entry i, i equal to
−1. Then M = Mj −Mi.

Therefore the zero trace matrices have a basis of size (n2 − n) + (n− 1) = n2 − 1.
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22: Certainly it is sufficient that W1 ⊆ W2, since then W1∩W2 = W1. It is also necessary,
because W1∩W2 is always a subspace of W1, so if the dimensions match it must be equal.
The only way to have W1 ∩W2 = W1 is to have W1 ⊆ W2.

Section 2.1

4: Null space is matrices of the form

(
1
2
a12 a12 −2a12

a21 a22 a23

)
, dimension 4. Range is

matrices with zero second row, dimension 2. Neither 1-1 nor onto.

5: Null space {0} (image of ax2 +bx+c is ax3 +bx2 +(2a+c)x+b), range all polynomials
where x2’s coefficient is the same as the constant term, dimension 3. 1-1 but not onto.

9: None of these distribute over sum, for various reasons. Additionally, (c) and (e) do
not commute with scalar multiplication.

10: T (2, 3) = T (3(1, 1) − (1, 0)) = 3T (1, 1) − T (1, 0) = (6, 15) − (1, 4) = (5, 11). T is
1-1 because the basis (1, 0), (1, 1) is carried to a basis, and so R(T ) = R2; from there the
argument is either the dimension theorem or the consequence of the dimension theorem
that between spaces of the same finite dimension, being 1-1 is equivalent to being onto.

14: (a) Suppose T is 1-1 and T (L) is linearly dependent. Since T is 1-1, there are as many
distinct vectors in T (L) as in L. Since T (L) is linearly dependent, there is a selection
of vectors from T (L), say T (`1), T (`2), . . . T (`n), such that with scalars ai not all zero,∑n

i=1 aiT (`i) = 0 . By linearity, T (
∑n

i=1 ai`i) = 0 , and there is no cancellation of a1

because the `i are all distinct vectors. By the fact that T is 1-1 and hence has zero kernel,∑n
i=1 ai`i = 0 , ai not all zero, and L is linearly dependent.
For the converse, note that for any nonzero vectore x, {x} is a linearly independent set,

but {0} is linearly dependent. Therefore if T carries linearly independent sets to linearly
independent sets, the only thing it can map to 0 is 0 , and hence its kernel is {0} and it
is 1-1.

(b) By part (a), is S is linearly independent T (S) must also be. Therefore suppose S
is linearly dependent, and consider the image of a1s1 + a2s2 + . . . + ansn = 0 , a nontrivial
representation of 0 by vectors from S. On the one hand, the image must be 0 , and on the
other is it a1T (s1) + a2T (s2) + . . . + anT (sn), a linear combination of n distinct vectors
from T (S) (still n distinct vectors by the fact that T is 1-1), where not all ai are zero (we
have gotten no cancellation). Therefore T (S) has a nontrivial representation of 0 and is
linearly dependent.

(c) By part (a) and T being 1-1, we know T (β) is linearly independent, and by a
previous theorem we know it spans R(T ). Since T is onto, R(T ) = W , and T (β) is thus
a linearly independent spanning set for W , a.k.a. a basis.

15: Linearity follows from the rules that you can factor constants out of integrals and
split integrals of sums into sums of integrals. By using the definite integral from 0 to x we
have eliminated the +C that comes along with indefinite integration, so each polynomial
has a unique image (hence T is well-defined); therefore T is not onto, as it misses any
polynomial with a nonzero constant term. Since derivatives are unique and the preimage
under T is the derivative of the given polynomial, T is 1-1.
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16: Every polynomial has a polynomial integral, so T is onto. However, every polynomial
has an infinite family of integrals which vary from each other by constants, so T is not
1-1: if f(x) = g(x) + k, k a scalar, then T (f(x)) = T (g(x)).

17: Both parts of this basically boil down to having enough linearly independent vectors
to work with. For (a), remember the image of a basis spans the range. That image
has at most dim(V ) linearly independent vectors, which is not enough to span all of W
when dim(W ) > dim(V ). For the latter, the image of a set of size dim(V ) under T will
necessarily be linearly dependent even if the original set was independent, because there
isn’t a size-dim(V ) set of linearly independent vectors in W : they cut off at dim(W ) <
dim(V ).

20: Images and preimages of subspaces are subspaces. Clearly they both contain 0 . For
the rest it is a matter of showing that linear combinations of elements of T (V1) are images
of elements of V1, and linear combinations of elements of T−1(W1) (to abuse notation;
there need not be an actual inverse to T ) map to W1 under T . Both use the simple
properties of linearity.

26: Mostly these are a matter of writing down definitions - none of the proofs are long.
For (c) consider the statement about W1 in part (a): if W1 is all of V , then T is the
identity transformation. For (d) look at R(T ): if W1 is the zero subspace, then T is the
zero transformation.

28: T (0 ) = 0 for any linear T ; T : V → V so T (V ) ⊆ V ; R(T ) = T (V ) so all images
fall into it, including those of its own elements; T (N(T )) = {0} ⊆ N(T ) by definition of
N(T ).

29: We know that T distributes over addition and scalar multiplication, and that it takes
0 to 0 . Since W is T -invariant, TW is a map from W to W . You can show easily, by
appealing to TW = T wherever TW is defined, that TW distributes over addition and scalar
multiplication and takes 0 to 0 , using the fact that if either ax + y or the pair x, y are in
W , then the other is as well.
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