## Selected answers to assignment 5, 2.2-2.3

## 2.2

5. (c) (1001)
(d) $(124)$
(f) $\left(\begin{array}{c}3 \\ -6 \\ 1\end{array}\right)$
(g) $(a)$
6. If $x$ is a linear combination of basis vectors with coefficients $a_{i}$ and $y$ with coefficients $b_{i}$, then

$$
T(c x+y)=\left(\begin{array}{c}
c a_{1}+b_{1} \\
\vdots \\
c a_{n}+b_{n}
\end{array}\right)=c\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)+\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)=c T(x)+T(y) .
$$

11. Let $\alpha$ be a basis for $W$ and extend it to a basis $\beta$ for all of $V$, ordered so that the vectors from $\alpha$ are listed first. Since $T(W) \subseteq W$, all elements of $\alpha$ will be mapped by $T$ to linear combinations of elements of $\alpha$. That is, their image coordinate vectors will have zeros in the $(k+1)^{\text {st }}$ through $n^{t h}$ places. Since the images of the basis vectors form the columns of $[T]_{\beta}$, the first $k$ columns will be zero from row $k+1$ down, and $[T]_{\beta}$ has the required form.
12. We want to show that if $a T+b U=T_{0}$, we must have $a=b=0$. We know that if one of $a$ or $b$ is nonzero, the other must also be, because neither $T$ nor $U$ is $T_{0}$ and hence neither is a multiple of $T_{0}$. If

$$
(a T+b U)(x)=0, \text { then } a T(x)+b U(x)=0
$$

by definition. Hence $a T(x)=-b U(x)$, so we must have $T(a x)=U(-b x)$. Both these values are in the range of their respective linear transformation, so both must be zero. If $a$ and $b$ are nonzero, $x$ must be in $N(T) \cap N(U)$ to get this equality. However, since neither $T$ nor $U$ is $T_{0}$, there are elements $y$ outside $N(T) \cap N(U)$, and on such $y a T+b U$ will give nonzero output. Therefore $a T+b U=T_{0}$ only when $a=b=0$, and $\{U, T\}$ is a linearly independent subset of $\mathcal{L}(V, W)$.
15. (a) Show $S^{0}$ is a subspace of $\mathcal{L}(V, W)$ :
$T_{0} \in S^{0}$ because $T_{0}(x)=0$ for all $x$, including those in $S$. If $T, U \in S^{0},(a T+U)(x)=$ $a T(x)+U(x)$ which is zero for all $x \in S$, so $a T+U \in S^{0}$.
(b) Show that $S_{1} \subseteq S_{2} \Rightarrow S_{2}^{0} \subseteq S_{1}^{0}$ :

Suppose $T \in S_{2}^{0}$. Then $T(x)=0$ for all $x \in S_{2}$. Since $S_{1} \subseteq S_{2}$, this includes all $x \in S_{1}$, so $T \in S_{1}^{0}$.
(c) Show that $\left(V_{1}+V_{2}\right)^{0}=V_{1}^{0} \cap V_{2}^{0}$ :
$\subseteq$ : Suppose $T\left(v_{1}+v_{2}\right)=0$ for all $v_{1} \in V_{1}, v_{2} \in V_{2}$. Then in particular, $T\left(v_{1}+0\right)=0$ and $T\left(0+v_{2}\right)=0$, so $T \in V_{1}^{0}$ and $T \in V_{2}^{0}$.
〇: Suppose $T \in V_{1}^{0} \cap V_{2}^{0}$. Then for all $v_{i} \in V_{i}, T\left(v_{1}+v_{2}\right)=T\left(v_{1}\right)+T\left(v_{2}\right)=0+0=0$.

## 2.3

4. (b) $\left(\begin{array}{c}-6 \\ 2 \\ 0 \\ 6\end{array}\right)$
(d) (12)
5. Suppose $T^{2}=T_{0}$. Then $T(T(x))=0$ for all $x$, so $T(y)=0$ for all $y \in R(T)$. Hence $R(T) \subseteq N(T)$. Now suppose $R(T) \subseteq N(T) . \quad T(T(x))=T(y)$ for some $y \in R(T)$, so $T(y)=0$. Hence for all $x T^{2}(x)=0$ and $T^{2}=T_{0}$.
6. (a) Show $U T$ one-to-one implies $T$ one-to-one:

Suppose some $x_{1} \neq x_{2} \in V$ are such that $T\left(x_{1}\right)=T\left(x_{2}\right)$. Then $U\left(T\left(x_{1}\right)\right)=U\left(T\left(x_{2}\right)\right)$ so $(U T)\left(x_{1}\right)=(U T)\left(x_{2}\right)$. Hence if $T$ is not one-to-one, neither can $U T$ be, so if $U T$ is one-to-one, $T$ must be also.

However, $U$ need not be one-to-one on all of $W$, just on $R(T)$. E.g., let $T: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be $T(a)=(a, 0)$ and $U: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be $U(a, b)=a$.
(b) Show $U T$ onto implies $U$ onto:

Suppose $U T$ is onto, so for any $y \in Z$ there is some $x \in V$ such that $U T(x)=y$. But then $U(T(x))=y$ for some $T(x) \in W$, so $U$ is onto.

Same example as in (a) shows that $T$ need not be onto.
(c) Show $U, T$ one-to-one and onto implies $U T$ one-to-one and onto:

Let $x_{1} \neq x_{2} \in V$. Then $T\left(x_{1}\right) \neq T\left(x_{2}\right)$ since $T$ is one-to-one, and hence $U\left(T\left(x_{1}\right)\right) \neq$ $U\left(T\left(x_{2}\right)\right)$ since $U$ is one-to-one. Therefore $U T$ is one-to-one.

Now suppose $z \in Z$. Since $U$ is onto there is $w \in W$ so that $U(w)=z$, and since $T$ is onto there is $v \in V$ such that $T(v)=w$. Therefore $U T(v)=z$ and $U T$ is onto.
15. The $j^{\text {th }}$ column of $M A$ is

$$
\left(\begin{array}{c}
\sum_{k=1}^{n} M_{1 k} A_{k j} \\
\vdots \\
\sum_{k=1}^{n} M_{m k} A_{k j}
\end{array}\right)
$$

and we may write

$$
A_{k j}=\sum_{i=1}^{r} a_{\ell_{i}} A_{k \ell_{i}}
$$

for all $1 \leq k \leq n$. Rearrange the resulting formula for $M^{\prime}$ 's $t j^{\text {th }}$ entry into

$$
\sum_{i=1}^{r} a_{\ell_{i}} \sum_{k=1}^{n} M_{t k} A_{k \ell_{i}}
$$

and note this is exactly the linear combination corresponding to the one in $A$, as required.
17. Projections are the answer (see exercises from $\S 2.1$, especially \#26).
projection $\Rightarrow T=T^{2}$ : For any sum, $T\left(w_{1}+w_{2}\right)=w_{1}=w_{1}+0$, so $T^{2}\left(w_{1}+w_{2}\right)=$ $T\left(w_{1}+0\right)=w_{1}=T\left(w_{1}+w_{2}\right)$.
$T=T^{2} \Rightarrow$ projection: Certainly $\{y: T(y)=y\} \cap N(T)=\{0\}$. For any $x \in V$ we may write $x=x-T(x)+T(x)$. By assumption, $x-T(x) \in N(T)$, since $T(x-T(x))=$
$T(x)-T^{2}(x)$. Also by assumption, $T(x) \in\{y: T(y)=y\}$, since $T(T(x))=T^{2}(x)=T(x)$. Thus as long as $\{y: T(y)=y\}$ is a subspace of $V$, we get $V=\{y: T(y)=y\} \oplus N(T)$ and $T$ is a projection.

For subspace, let $x, y \in\{y: T(y)=y\} . \quad T(c x+y)=c T(x)+T(y)=c x+y$ for $c x+y \in\{y: T(y)=y\}$.

