Selected answers to assignment 6: 2.4

2. (a), (b), (d), (e) noninvertible; dimensions wrong.
(c) invertible; standard basis mapped to $(3,0,3),(0,1,4),(-2,0,0)$, which is a basis.
(f) invertible; standard basis mapped to $\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)$, $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$, which is a basis.
3. (b), (c) are isomorphic pairs; (a), (d) are not. All by dimension.
4. Multiply $A B$ by $B^{-1} A^{-1}$; replace the inverse pairs by I_{n} from the inside-out.
5. The transpose of a product is the product of the transposes in reverse order. Apply that to $A A^{-1}$ or the reverse.
6. Since A is invertible there is some A^{-1}. Then $A^{-1} A B=A^{-1} 0$, which simplifies to $B=0$.
7. (a) Since I_{n} is invertible and A, B are square, exercise 9 applies and shows A and B are invertible.
(b) Since A and B are invertible we may multiply the equality $A B=$ I_{n} on the left by A^{-1} or on the right by B^{-1}; simplification gives $B=$ A^{-1} and $A=B^{-1}$.
(c) If V and W are n-dimensional vector spaces and $T: V \rightarrow W$, $U: W \rightarrow V$ are such that $U T=I_{V}$, then T and U are invertible and are in fact each others' inverses. Proof by applying (a) and (b) to $[U T]_{\beta}$.
8. Isomorphism is reflexive: $V \sim V$ as witnessed by I_{V}.

Symmetric: if $V \sim W$ is witnessed by T, then T^{-1} witnesses $W \sim V$.
Transitive: if $V \sim W$ and $W \sim Z$, shown by T and U respectively, then $V \sim Z$ is shown by $U T$.
16. $B^{-1}(c A+D) B=c B^{-1} A B+B^{-1} D B$ by a few applications of Theorem 2.12, p. 89. Use exercise 6 twice to argue that if $B^{-1} A B=0$, A must be 0 . Hence the null space is zero and Φ is one-to-one. Since the vector space is finite-dimensional that suffices to show Φ is also onto and hence an isomorphism.
20. Since ϕ_{β} is an isomorphism, $R\left(L_{A} \phi_{\beta}\right)=R\left(L_{A}\right)$. Since ϕ_{γ} is an isomorphism, by \#17 $R\left(\phi_{\gamma} T\right)$ has equal rank to $R(T)$. Commutativity of Figure 2.2 then shows $\operatorname{rank}(T)=\operatorname{rank}\left(L_{A}\right)$.

The nullity argument is similar.

