Selected answers to assignment 7: 2.5, 3.1

2.5

9. "is similar to" is an equivalence relation:
reflexive: $A=I^{-1} A I$
symmetric: if $B=Q^{-1} A Q$, then $A=\left(Q^{-1}\right)^{-1} B\left(Q^{-1}\right)$.
transitive: if $B=Q^{-1} A Q$ and $C=P^{-1} B P$, then $C=P^{-1} Q^{-1} A Q P=$ $(Q P)^{-1} A(Q P)$.
10. The part of the corollary requiring proof is that the equality holds. Q is the change of coordinate matrix from γ coordinates to β ($=$ standard basis) coordinates automatically (see the top of page 112). The equality's proof comes from remembering L_{A} is defined specifically with respect to the standard basis β and applying Theorem 2.23.
11. If β^{\prime} is a basis, then definitionally Q is the change-of-coordinate matrix. Hence we need only prove β^{\prime} is a basis. Suppose there is a nontrivial representation of zero from elements of β^{\prime}; in other words,

$$
a_{1} x_{1}^{\prime}+a_{2} x_{2}^{\prime}+\ldots+a_{n} x_{n}^{\prime}=0
$$

for some a_{i} not all zero. Then by definition of β^{\prime}, we get

$$
a_{1} \sum_{i=1}^{n} Q_{i 1} x_{i}+a_{2} \sum_{i=1}^{n} Q_{i 2} x_{i}+\ldots+a_{n} \sum_{i=1}^{n} Q_{i n} x_{i}=0 .
$$

Rearrange the sums and collect together the different x_{i} :

$$
\left(\sum_{j=1}^{n} a_{j} Q_{1 j}\right) x_{1}+\left(\sum_{j=1}^{n} a_{j} Q_{2 j}\right) x_{2}+\ldots+\left(\sum_{j=1}^{n} a_{j} Q_{n j}\right) x_{n}=0 .
$$

This is a representation of 0 by vectors from β and hence must be trivial, so for all i,

$$
\sum_{j=1}^{n} a_{j} Q_{i j}=0
$$

In other words, there is a linear combination of the columns of Q which gives zero. Since Q is invertible, it must be a trivial representation of zero, and finally we see $a_{i}=0$ for all i (phew!).

3.1

3. (b) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & 1\end{array}\right)$
4. The key is that elementary matrices always are obtained by applying a single elementary operation to the identity matrix, and therefore we can characterize them well. If E is our elementary matrix and it is obtained by swapping the i, j th rows, then E has entries which are identical to the identity in rows other than i, and j, and in those rows it has a single 1: entry $i j$ and $j i$ (instead of $i i$ and $j j$. However, this is exactly what is accomplished by swapping columns i and j.

Likewise, multiplying row i by c is equivalent to multiplying column i by c.

For the third sort of operation we must be a little more careful. Suppose E is obtained by multiplying the i th row of I by c and adding it to the j th row. Then the only difference between E and I is a c in the $j i$ th position. This can be equivalently gotten by multiplying the j th column of I and adding it to the i th row (note the interchange of indices).
6. This should be clear. Probably the quickest way to prove it is to say that if E is elementary and $E A=B$, then $A^{t} E^{t}=B^{t}$, and E on the left and E^{t} on the right are corresponding row and column operations.

