## Assignment 8 - selected answers (3.2-3.3)

## 3.2

3. Clearly $A=0$ implies $A$ 's rank is 0 . For the converse, if $A \neq 0$ it must have at least one nonzero column and hence the columns must span a vector space of dimension at least 1 .
4. (b) rank is 2, matrix is

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)
$$

6. (a) $T^{-1}$ can also be expressed as $T(f(x))=-\left(f(x)+2 f^{\prime}(x)+f^{\prime \prime}(x)\right)$.
(b) $T(1)=0$, so noninvertible.
(d) $T^{-1}\left(b_{1}+b_{2} x+b_{3} x^{2}\right)=\left(b_{3}, \frac{1}{2}\left(b_{1}-b_{2}\right), \frac{1}{2}\left(b_{1}+b_{2}\right)-b_{3}\right)$.
(f) Since $\operatorname{tr}(A)$ and $\operatorname{tr}\left(A^{t}\right)$ are equal, $T$ is not onto and hence noninvertible.
7. Let $v_{i}$ be the columns of $A$ and $w_{i}=c v_{i}$ be the columns of $c A$. If $x=a_{1} v_{1}+\ldots+a_{n} v_{n}$, then because $c \neq 0, x=\frac{1}{c}\left(a_{1} w_{1}+\ldots+a_{n} w_{n}\right)$.
8. (a) Show $R(T+U) \subseteq R(T)+R(U)$ :

Let $x \in R(T+U)$. Then there is a $y$ with $(T+U)(y)=x$; i.e., $T(y)+U(y)=x$ and so $x \in R(T)+R(U)$.
(b) Show the rank of the sum is bounded by the sum of the ranks:

Certainly if $\beta$ is a basis for $R(T)$ and $\gamma$ a basis for $R(U)$, the set $\{b+0,0+g: b \in \beta, g \in \gamma\}$ spans $R(T)+R(U)$, and so the dimension of $R(T)+R(U)$ is bounded by $\operatorname{rank}(T)$ plus $\operatorname{rank}(U)$. Then since $R(T+U)$ is a subspace by part (a) the result follows.
(c) ......

## 3.3

2. (b) $\left(\begin{array}{c}\frac{1}{3} \\ \frac{2}{3} \\ 1\end{array}\right)$
3. (a) Other vectors besides $(5,0)$ would work (e.g., $(2,1))$.
(b) $\left\{\left(\begin{array}{c}\frac{2}{3} \\ \frac{1}{3} \\ 0\end{array}\right)+a\left(\begin{array}{c}\frac{1}{3} \\ \frac{2}{3} \\ 1\end{array}\right): a \in \mathbb{R}\right\}$
4. (a) $A^{-1}=\left(\begin{array}{cc}-5 & 3 \\ 2 & -1\end{array}\right)$, solution $\binom{-11}{5}$
5. $(11 / 2,-9 / 2,0)$ could be replaced, e.g. by $(0,1,-11)$
