
Selected Answers to 3.4 and 4.4 Suggested Problems

3.4

10. (a) S is clearly linearly independent, so we need only verify it is in V . 0−2+3−1+0 = 0,
so it is.

(b) We need a spanning set for V to which we can add S, then pare down into a basis. V
has dimension 4, since determining any four entries fixes the fifth, but determining 3 leaves
you freedom. Some vectors of V : (1, 0, 0, 1, 0), (0, 1, 0, 0, 1), (1, 0,−1, 0, 1), (2, 1, 0, 0, 0). This
is a linearly independent set and hence a basis. If we make a matrix with S as the first
column (this ensures S will be included in our basis) and this basis as the remaining four
columns and row-reduce it, we get

1 0 0 −1 0
0 1 0 1 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 0

 .

Since the first, second, third, and fifth columns correspond to the first four elements of the
standard basis, they correspond to our basis elements. Hence, a basis for V which includes
S would be

{(0, 1, 1, 1, 0), (1, 0, 0, 1, 0), (0, 1, 0, 0, 1), (2, 1, 0, 0, 0)}
(among many others).

14. We will prove by contrapositive. Suppose that A is not in reduced row echelon form.
Then at least one of the following applies:
(a) A row of all zeros is above a row with a nonzero entry.
(b) The first nonzero entry in some row is not the only nonzero entry in its column.
(c) The first nonzero entry in some row is c 6= 1.
(d) The first nonzero entry in some row is to the left of the first nonzero entry in a higher
row.

It is clear that if (b), (c), or (d) applies, (A|b) cannot be in reduced row echelon form,
because the addition of b will not affect the first nonzero entry in a row of A. Hence we must
only worry about (a).

If the entry of b corresponding to the zero row of A in question is zero, then (A|b) is not
in reduced row echelon form because it has a row of all zeros above a row which is not all
zero. If the entry of b is nonzero, then (A|b) has property (d) above, since the nonzero row
of A below the all-zero row of A is now a row whose first nonzero entry is to the left of the
first nonzero entry (the entry of b) of a higher row. Hence A not in reduced row echelon
form implies (A|b) is not in reduced row echelon form.

4.4

5. There are two ways to approach this. One is to say that M can be put into upper
triangular form by dealing only with rows of (A B), and then the determinant is taken by
the product of the diagonal elements. That product will be the product of the diagonal
elements of the altered A and will have the same relationship to the determinant of M as it
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does to the determinant of A (in the sense of sign; we may have had to perform some odd
number of row swaps to get it to upper triangular form), and hence det(M) = det(A).

The other method is by successive cofactor expansion along the last row of M and its
submatrices. Since A and I are square, M must also be square. Suppose A is k × k and M
is n × n for some n ≥ k. Let Mi denote the i × i matrix taken from the first i rows and
columns of M , so Mn = M and Mk = A. Then by cofactor expansion, since all but one
entry of each of the last n − k rows of M is zero,

det(M) = 1 · det(Mn−1) = 1 · 1 · det(Mn−2) = . . . = 1 · . . . · 1 · det(Mk) = det(A).

6. It is easy to show that (
I B
0 C

) (
A 0
0 I

)
=

(
A B
0 C

)
since A and C are square. By exercise 5 and the fact that det(XY ) = det(X) det(Y ), we
get that the determinant of M is det(A) det(C).

2


