Selected Answers to 3.4 and 4.4 Suggested Problems

3.4

10. (a) S is clearly linearly independent, so we need only verify it is in $V .0-2+3-1+0=0$, so it is.
(b) We need a spanning set for V to which we can add S, then pare down into a basis. V has dimension 4 , since determining any four entries fixes the fifth, but determining 3 leaves you freedom. Some vectors of $V:(1,0,0,1,0),(0,1,0,0,1),(1,0,-1,0,1),(2,1,0,0,0)$. This is a linearly independent set and hence a basis. If we make a matrix with S as the first column (this ensures S will be included in our basis) and this basis as the remaining four columns and row-reduce it, we get

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & -1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Since the first, second, third, and fifth columns correspond to the first four elements of the standard basis, they correspond to our basis elements. Hence, a basis for V which includes S would be

$$
\{(0,1,1,1,0),(1,0,0,1,0),(0,1,0,0,1),(2,1,0,0,0)\}
$$

(among many others).
14. We will prove by contrapositive. Suppose that A is not in reduced row echelon form. Then at least one of the following applies:
(a) A row of all zeros is above a row with a nonzero entry.
(b) The first nonzero entry in some row is not the only nonzero entry in its column.
(c) The first nonzero entry in some row is $c \neq 1$.
(d) The first nonzero entry in some row is to the left of the first nonzero entry in a higher row.

It is clear that if $(\mathrm{b}),(\mathrm{c})$, or (d) applies, $(A \mid b)$ cannot be in reduced row echelon form, because the addition of b will not affect the first nonzero entry in a row of A. Hence we must only worry about (a).

If the entry of b corresponding to the zero row of A in question is zero, then $(A \mid b)$ is not in reduced row echelon form because it has a row of all zeros above a row which is not all zero. If the entry of b is nonzero, then $(A \mid b)$ has property (d) above, since the nonzero row of A below the all-zero row of A is now a row whose first nonzero entry is to the left of the first nonzero entry (the entry of b) of a higher row. Hence A not in reduced row echelon form implies $(A \mid b)$ is not in reduced row echelon form.

4.4

5. There are two ways to approach this. One is to say that M can be put into upper triangular form by dealing only with rows of $(A B)$, and then the determinant is taken by the product of the diagonal elements. That product will be the product of the diagonal elements of the altered A and will have the same relationship to the determinant of M as it
does to the determinant of A (in the sense of sign; we may have had to perform some odd number of row swaps to get it to upper triangular form), and hence $\operatorname{det}(M)=\operatorname{det}(A)$.

The other method is by successive cofactor expansion along the last row of M and its submatrices. Since A and I are square, M must also be square. Suppose A is $k \times k$ and M is $n \times n$ for some $n \geq k$. Let M_{i} denote the $i \times i$ matrix taken from the first i rows and columns of M, so $M_{n}=M$ and $M_{k}=A$. Then by cofactor expansion, since all but one entry of each of the last $n-k$ rows of M is zero,

$$
\operatorname{det}(M)=1 \cdot \operatorname{det}\left(M_{n-1}\right)=1 \cdot 1 \cdot \operatorname{det}\left(M_{n-2}\right)=\ldots=1 \cdot \ldots \cdot 1 \cdot \operatorname{det}\left(M_{k}\right)=\operatorname{det}(A)
$$

6. It is easy to show that

$$
\left(\begin{array}{cc}
I & B \\
0 & C
\end{array}\right)\left(\begin{array}{cc}
A & 0 \\
0 & I
\end{array}\right)=\left(\begin{array}{cc}
A & B \\
0 & C
\end{array}\right)
$$

since A and C are square. By exercise 5 and the fact that $\operatorname{det}(X Y)=\operatorname{det}(X) \operatorname{det}(Y)$, we get that the determinant of M is $\operatorname{det}(A) \operatorname{det}(C)$.

