
Mathematical Induction
Notes and worksheet for Math 24, Spring 2006

The Replacement Theorem (Theorem 1.10 in your text) is proved by in-
duction. It is possible that at this point you’ve had only a passing acquain-
tanceship with induction or even none at all.

The basic premise of induction is that if you can start, and once you start
you know how to keep going, then you will get all the way to the end. If I
can get on the ladder, and I know how to get from one rung to the next, I
can get to the top of the ladder.

Principle of Mathematical Induction, basic form:
If S is a subset of the positive integers such that 1 ∈ S and n ∈ S implies

n + 1 ∈ S for all n, then S contains all of the positive integers. [We may
need the beginning to be 0 or another value depending on context.]

Use of mathematical induction. In general you want to use induction
to show that some property holds no matter what integer you feed it, or no
matter what size finite set you are dealing with. The proofs always have a
base case, the case of 1 (or wherever you’re actually starting). Then they
have the inductive step, the point where you assume the property holds for
some unspecified n and then show it holds for n + 1.

An example:
Prove that for every positive integer n, the equation

1 + 3 + 5 + . . . + (2n− 1) = n2

holds.

Proof:
Base case: For n = 1, the equation is 1 = 12, which is true.
Inductive step: Assume that 1 + 3 + 5 + . . . + (2n− 1) = n2 for some n ≥ 1.
To show that it holds for n+1, add 2(n+1)−1 to each side, in the simplified
form 2n + 1:

1 + 3 + 5 + . . . + (2n− 1) + (2n + 1) = n2 + 2n + 1 = (n + 1)2.

Since the equation above is that of the theorem, for n + 1, by induction the
equation holds for all n.

Another example:
Prove that for n > 2, the sum of angle measures of the interior angles of a
convex polygon of n vertices is (n− 2) · 180◦.

Proof:
Base case: Here we begin at n = 3 instead of 0 or 1. For n = 3, the
polygon in question is a triangle, and it has interior angles which sum to
180◦ = (3− 2) · 180◦.
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Inductive step: Suppose the theorem holds for n ≥ 3 and consider a convex
polygon with n + 1 vertices. Since n + 1 ≥ 4, if we take one vertex x there
is another vertex y such that there is one vertex between x and y in one
direction, and n − 2 in the other direction. Join x and y by a new edge,
dividing our original polygon into two polygons. The new polygons’ interior
angles summed together make up the sum of the original polygon’s interior
angles. One of the new polygons is a triangle and the other a polygon of
n vertices (all but the one isolated between x and y). The triangle has
interior angle sum 180◦, and by the inductive hypothesis the other polygon
has interior angle sum (n−2) ·180◦. Summing these we get (n+1−2) ·180◦,
and the theorem is proved.

As you get more comfortable with induction, you can write it in a more
natural way, without segmenting off the base case and inductive step portions
of the argument.

Induction proofs to try:

(1) For every positive integer n,

1 + 4 + 7 + . . . + (3n− 2) =
1

2
n(3n− 1).

(2) For every positive integer n,

21 + 22 + . . . + 2n = 2n+1 − 2.

(3) For every positive integer n,
n3

3
+

n5

5
+

7n

15
is an integer.

(4) For every positive integer n, 4n − 1 is divisible by 3.

(5) The sequence a0, a1, a2, . . . defined by a0 = 0, an+1 = an+1
2

is bounded
above by 1.

(6) Recall that for a binary operation ∗ on a set A associativity is defined
as “for any x, y, z, (x ∗ y) ∗ z = x ∗ (y ∗ z).” Use induction to prove
that for any collection of n elements from A being put together with
∗, n ≥ 3, any grouping of the elements which preserves order will
give the same result.


