
Math 24 Spring 2006 Final Exam
Review Guide

A. Some items to know:

(1) The definition and how to check it for the following:
(a) vector space
(b) subspace
(c) linearly independent set
(d) linear transformation

(2) Standard examples of the following:
(a) vector spaces, with their dimensions and standard bases
(b) linear transformations (including IV and T0), with their null space and range

(3) Cancellation and that multiplication by zero gives zero in a vector space.
(4) That the intersection of two subspaces is a subspace but the union almost never is.
(5) Linear combinations, linear dependence and independence, generating/spanning sets,

bases, trivial and nontrivial representations of 0 , dimension.
(6) That any linearly independent set may be built up to a basis and any spanning set

pared down into one; given a linearly independent set L of size n any spanning set
may have n of its elements swapped out for L and the result will still span (though
not just any n elements may be swapped out). The consequence that any linearly
independent set or spanning set of the correct size is a basis.

(7) That linear transformations are determined entirely by what they do to a basis (and
that for anything you want to do to it, there is a transformation), and that the basis
images can be used to make a matrix representation of T .

(8) Null space (kernel) and range (image); that N(T ) is a subspace of the domain and
R(T ) of the codomain. Nullity and rank and their relationship to the dimension of
the domain.

(9) Characterizations of one-to-one and onto in terms of null space and rank (remember
the limitation that to relate one-to-one and onto the domain and codomain must
have equal dimension).

(10) Ordered bases and the distinction between vectors and coordinate vectors.
(11) How to add and scalar-multiply linear transformations, and that the set of all linear

maps between two fixed vector spaces are themselves a vector space. How to multi-
ply matrices. That matrix multiplication and linear transformation composition are
tightly related.

(12) Isomorphism and the characterization of vector spaces up to isomorphism by their
dimension. Invertibility for transformations and matrices and their relationship.

(13) The left-multiplication transformation and the fact that it is the inverse operation to
matrix representation of transformations in terms of the standard basis (and hence
that L(V, W ) and Mdim W×dim V (F ) are isomorphic).

(14) Change of coordinates matrices and using them to simplify the finding of linear
transformation matrices. Definition of similarity.

(15) Elementary row and column operations and matrices; their relationship to each other;
the matrices’ relationship to their inverses; that every invertible matrix is the product
of elementary matrices.

1



(16) Rank for a matrix; that multiplication by invertible matrices preserves rank; the
alternate characterizations of rank as the maximum number of linearly independent
rows or columns and the attendant restriction on the maximum rank of a matrix.

(17) That rank cannot increase when multiplying matrices or composing linear transfor-
mations.

(18) That by using row and column operations, any matrix may be transformed into one
which has an identity matrix in the upper left-hand corner and zeros elsewhere (and
hence rank is preserved between a matrix and its transpose). Using row operations
only, the matrix can be transformed into reduced row echelon form.

(19) The augmented matrix (for A or Ax = b) and how to use row operations to reduce
it to find the rank (and inverse, if it exists) of A or the solution to Ax = b. You will
not be required to use Gaussian elimination (create leading 1s left to right with 0s
below them and then work right to left to put 0s above the leading 1s) but as it is
provably the most efficient way to row-reduce, you are encouraged to adopt it.

(20) That reduced row echelon form is unique, and that the linear dependence relationships
between its columns are the same as in the original matrix, and therefore it may be
used to find bases out of spanning sets.

(21) The terms homogeneous, nonhomogeneous, consistent, inconsistent, and equivalent
(applied to systems of linear equations in all cases). The characterization of the
solution set of a homogeneous system as a null space.

(22) The relationship between Ax = b and Ax = 0 ; the fact that an invertible A gives
a system with exactly one solution, A−1b. The breakdown of a general solution for
Ax = b into a single solution for Ax = b and a basis for the solution set of Ax = 0 .

(23) Definition of determinant and how to find it by cofactor expansion; relationship be-
tween determinant and invertibility; that determinant is unchanged by taking trans-
pose or finding a similar matrix.

(24) What it means for a matrix to be diagonalizable and the relationship to change of
coordinate matrices.

(25) The three eigen-words and how they relate to each other; how to find them from
a given linear transformation or matrix. Remember eigenvalues may be zero but
eigenvectors are nonzero. Characteristic polynomial and how to find it.

(26) What can go wrong when finding eigenvalues and eigenspaces – i.e., the characteri-
zation of when a matrix is diagonalizable. Definition of splitting and multiplicity.

B. Some notes on proofs.
I will ask you at least one old proof on the exam (from the book or from homework), and

there will be something new to prove on the exam. Memorizing is not as good a use of your
time as trying to understand what’s going on. Results which we continued to use through
the term, with relatively short proofs, are the best candidates for the old proof.

Common techniques:

(1) Addition of 0 (or 0 ) or multiplication by 1 (or I) in some form.
(2) Using the (high-level) definition of a vector operation or function on vector spaces to

put things in terms of the (low-level) entries of a vector where you can use properties
of, say, ordinary arithmetic.
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(3) Noting that a certain constant c is nonzero and using that fact to solve a linear
combination for the vector which has c as a coefficient.

(4) Building a particular basis for a vector space by starting with a given linearly inde-
pendent set (such as the basis of a subspace).

(5) Using the fact that a transformation is linear to transfer properties between the
domain and codomain.

(6) Constructing a linear transformation that maps a basis to a set you specify and
proving it has desired properties.

(7) Shifting between linear transformations and their matrix representations.
(8) For rank or consistency, simplifying the matrix in a legal way to get a matrix for

which the answer is clear.
(9) Use of some basic results:

(a) Big-enough linearly independent sets and small-enough spanning sets are bases;
the size of a spanning set limits the maximum dimension of a vector space.

(b) The image of a basis spans the range of a linear transformation.
(c) The nullity and rank of a transformation sum to the dimension of its domain;

nullity of zero is equivalent to being one-to-one.

It is often best to work directly from the definition (we do it all the time when checking
a transformation is linear or a subset of a vector space is a subspace). In fact, many proofs
are nearly as short proved directly as they are using any of the results listed in #9 above.
A note from quiz 2: think carefully in a problem whether you want to work with matrices
as a whole or element-wise. Sometimes using, say, the definition of matrix multiplication is
necessary, but if you can, it is generally nicer to assert things about the matrix as a whole
(for example, if you’re working with invertibility, look at what can be done with A−1A = I
rather than the linear independence of the rows or columns of A).

C. Some summations.

I. For an n× n matrix A over a field F , the following are equivalent:

(1) A is invertible.
(2) rank(A) = n.
(3) rank(At) = n.
(4) The columns of A are all linearly independent.
(5) The rows of A are all linearly independent.
(6) For every b ∈ F n, there is exactly one a ∈ F n such that Aa = b.
(7) The determinant of A is nonzero.
(8) All of the eigenvalues of A are nonzero.

Some would say that determining when a matrix/linear operator is invertible is the point
of linear algebra, and so the list above is the “key theorem” of linear algebra.

II. A flowchart of diagonalization; dimension is n and matrix A (which is [T ]β if starting
with a linear transformation T ). Theory on the left and practice on the right.

Remember that everything in the process comes from the equation Ax = λx.
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0. Put the linear transformation into matrix form.

Eigenvalues are λ such that 1. Find the characteristic polynomial and its roots.
det(A− λIn) = 0. That is, Does it have n roots (including repeats)?
they are values which make No −→ A is not diagonalizable, but any roots it
that difference of matrices does have are eigenvalues and step 2 can be
noninvertible, so it has null used to find their eigenvectors.
space more than just zero. Yes −→ A may be diagonalizable; find all roots

and proceed to step 2.

Eigenvectors are x such that 2. For each eigenvalue λ found in Step 1, find the null
(A− λIn)x = 0 . Distinct space of LA−λIn . Is its dimension the same as the
eigenvalues have linearly in- multiplicity of λ?
dependent nonzero eigenval- No (for any) −→ A is not diagonalizable, though
ues; that is, their eigenspaces all elements of the null space are eigenvectors.
intersect to {0}. Each eigen- Yes (for all) −→ A is diagonalizable; the diagonal
space has dimension at most elements are the eigenvalues, with order corre-
the multiplicity of the eigen- sponding to the ordered basis of eigenvectors.
value, so each must be max-
imal to have a basis of eigen-
vectors.
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