Math 24 Spring 2006 Quiz 1 Review Guide

A. To look at specifically (besides the homework, lecture notes, and book sections in general):
(1) The true-false questions at the end of each section 1.2-1.6.
(2) The key examples: $F^{n}, P_{n}(F)$ and $P(F), M_{n \times m}(F), \mathcal{F}(S, F)$.
(3) Short proofs (you may be asked to reproduce them).
B. Some items to know:
(1) Definition of group and field, uniqueness of identities and inverses, cancellation
(2) Definition of vector space, how to tell whether a given set and operations form a vector space
(3) Immediate consequence of the vector space definition: cancellation, uniqueness of zero and inverses, multiplication by scalar or vector zero gives result zero, inverse commutes strongly with scalar multiplication
(4) Definition of subspace, how to tell whether a given subset of a vector space is a subspace
(5) Standard examples of subspaces of $M_{n \times n}$: diagonal and symmetric matrices
(6) Result of union or intersection of subspaces
(7) Definition of linear combination, span, generate
(8) How to set up and solve a system of linear equations given a linear combination of vectors with some unknowns
(9) Definition of linear dependence, linear independence, relationship to linear combinations and span
(10) How to use linear equations to determine whether a set of vectors is linearly independent
(11) What linear dependence and independence of one set $S_{1} \subset S_{2}$ tells you about the other set (if anything)
(12) Definition of basis; relationship of basis size to size of linearly independent sets and spanning sets, number of representations of a vector of V as linear combinations of its basis vectors
(13) The standard bases for the key examples in A2 above (except $\mathcal{F}(S, F))$
(14) How to obtain a basis from a spanning set; the replacement theorem and its corollary about basis size
(15) Definition of dimension, dimension of subspace
C. Some items not to memorize:
(1) The definition of characteristic for a field; that will not be on the exam.
(2) The definitions of trace, + (sum of vector spaces), and \oplus : if you need them I will provide their definitions.
(3) Proofs. Even the short ones - memorizing them is a worse use of your time than simply trying to understand them and memorizing the usual tricks (adding 0 in some form, for instance).
(4) Lagrange interpolation: we skipped this entirely.
D. Some ways to practice, if you're looking for more work:
(1) Invent collections of vectors in the standard vector space examples (where the field is \mathbb{R} or \mathbb{C} and calculate whether they are linearly dependent or independent.
(2) Look at problems in the book similar to homework exercises: if I gave you some of the parts of a problem, try other parts. In particular, $1.2 \# 10-12,16,18-21 ; 1.3$ \#10-13, 22; 1.4 \#5, 12, $16 ; 1.5 \# 8 a, 10,12-15,17 ; 1.6 \# 4,8,9,13,14,16,17,21$
(3) Try to write short proofs in your own words.

