Instructor: John D. Trout

Course on canvas.dartmouth.edu.

Syllabus

Lecture Date Read Sections Description Lecture Notes, Handouts & Daily HW
1

Monday

March 31

Appendices

A, B, C, D

 Course Introduction

Download M24 General Notation.pdf

lecture-01.pdf Download lecture-01.pdf

2

Wednesday

April 2

1.1 & 1.2 Vector Spaces

lecture-02.pdf Download lecture-02.pdf

HW § 1.2 # 1, 4 aceg, 13, 14, 15

3

Friday

April 4

1.2 & 1.3

Vector Spaces

& Subspaces

lecture-03.pdf Download lecture-03.pdf

HW § 1.3: # 1, 2 ace, 8, 11, 15

4

Monday

April 7

1.3 & 1.4

Subspaces (cont'd)

& Linear Combinations

lecture-04.pdf Download lecture-04.pdf

Lecture 4 notes.pdf Download Lecture 4 notes.pdf

HW § 1.4: # 2 ace, 3 ace

5

Wednesday

April 9

1.4 & 1.5

Linear Combinations (cont'd) & Linear (In)dependence

l Download lecture-05.pdf Download ecture-05.pdf

Lecture 5 notes.pdf Download Lecture 5 notes.pdf

HW § 1.4: # 1, 4 ace, 5 aceg

6

Friday

April 11

1.5 & 1.6

Linear (In)dependence (cont'd) &

Bases & Dimension

lecture-06.pdf Download lecture-06.pdf

Lecture 6 notes.pdf Download Lecture 6 notes.pdf

HW § 1.5: # 1, 2 acegi, 7

HW § 1.6: # 2 ae, 3 ac, 5

7

Monday

April 14

 1.6 & 2.1

 Bases & Dimensions (cont'd),

Linear Transformations

lecture-07.pdf Download lecture-07.pdf

Lecture 7 notes.pdf Download Lecture 7 notes.pdf

HW 1.6: # 1, 4, 9, 13, 20

8

Wednesday

April 16

2.1

Review Appendix B

Linear Transformations (cont'd)

lecture-08.pdf Download lecture-08.pdf

Lecture 8 notes.pdf Download Lecture 8 notes.pdf

Rank-Nullity Example.pdf Download Rank-Nullity Example.pdf

Rank-Nullity Example.gcf Download Rank-Nullity Example.gcf (Graph Calc demo)

HW § 2.1: # 1, 2, 4, 5, 10, 12, 13

9

Friday

April 18

 2.1 & 2.2

Linear Transformations (cont'd).,

Coordinate Vectors relative to Ordered Bases

lecture-09.pdf Download ecture-09.pdf

Lecture 9 notes.pdf Download Lecture 9 notes.pdf

10

Monday

April 21

2.2

Matrix Representation of Linear Transformations

lecture-10.pdf Download lecture-10.pdf

HW § 2.2: # 1, 2 acdf, 3,5 abe, 13

 

11

Wednesday

April 23

2.3

Composition of Linear Transformations and Matrix Multiplication

lecture-11.pdf Download lecture-11.pdf

Lecture 11 notes.pdf Download Lecture 11 notes.pdf

HW § 2.3: # 1, 2 ab, 3 a, 4 ac, 15

 

12

Friday

April 25

2.4

Invertibility and Isomorphisms

lecture-12.pdf Download lecture-12.pdf

Lecture 12 Notes.pdf Download Lecture 12 Notes.pdf

Matrix Multiply Inverse.pdf Download Matrix Multiply Inverse.pdf

Matrix Multiply Inverse.gcf Download Matrix Multiply Inverse.gcf

HW § 2.4: # 1, 2, 3

13

Monday,

April 28

2.5 & 3.1

Change of Coordinate Matrix

& Elementary Matrix Operations

lecture-13.pdf Download lecture-13.pdf

Lecture 13 notes.pdf Download Lecture 13 notes.pdf

HW § 2.5: # 1, 2 ac, 3 ce, 4, 5, 6 a, 13

14

Wednesday,

April 30

3.1 & 3.2 Elementary Matrix Operations & Rank and Invertible Matrices

lecture-14.pdf Download lecture-14.pdf

Lecture 14 notes.pdf Download Lecture 14 notes.pdf

HW § 3.1: # 1, 2, 3 ac

HW § 3.2: # 1, 2 ace, 4 a

Thursday,

May 1

x-hour More Examples and Some Review! 2D Linear Transformations.pdf Download 2D Linear Transformations.pdf
15

Friday,

May 2

3.2 & 3.3 Inverses of Matrices & Theory of Linear Systems

lecture-15.pdf Download lecture-15.pdf

Lecture 15 notes.pdf Download Lecture 15 notes.pdf

HW § 3.2: # 5 aceg

HW § 3.3: # 1, 2 ace, 3 ace, 4 b

16

Monday,

May 5

3.4 Computational Aspects of Linear Systems

lecture-16.pdf Download lecture-16.pdf

Lecture 16 notes.pdf Download Lecture 16 notes.pdf

HW § 3.4: # 1, 2 aei, 4 ac, 5, 15

Wednesday,

May 7

Midterm Exam
17

Friday,

May 9

4.1 & 4.2

Determinants of

Order 2 and Order n

lecture-17.pdf Download lecture-17.pdf

HW § 4.1: # 1, 2 ac, 12

HW § 4.2: # 1, 3, 5, 7, 11, 15, 29

 

Monday,

May 12

NO CLASS NO CLASS
18

Wednesday,

May 14

4.3 & 4.4

Properties of Determinants and Summary

lecture-18.pdf Download lecture-18.pdf

Lecture 18 notes.pdf Download Lecture 18 notes.pdf

HW § 4.3: # 1 abcdef, 21

HW § 4.4: # 1, 3 acg, 4 acg

19

Friday,

May 16

5.1

Eigenvalues and Eigenvectors

lecture-19.pdf Download lecture-19.pdf

HW § 5.1: # 1, 2 ace, 3 a, 4 abf, 15

20

Monday,

May 19

5.1 & 5.2

Eigenvalues and Eigenvectors,

Diagonalizability

lecture-20.pdf Download lecture-20.pdf

HW § 5.2: # 1, 2 aceg, 3 acde, 7, 12 a

21

Wednesday,

May 21

5.2

Diagonalizability (cont'd)

l Download lecture-21.pdf Download ecture-21.pdf

HW § 5.2: # 1, 2 aceg, 3 acde, 7, 12 a

x-hour

Thursday,

May 22

Canceled

x-hour will be rescheduled for next week.

22

Friday,

May 23

5.4

Invariant Subspaces and the Cayley-Hamilton Thm

lecture-22.pdf Download lecture-22.pdf

HW: § 5.4: #  1, 2, 6 ac, 9 ac, 10 ac, 15

 

Monday,

May 26

NO CLASS

Memorial Day

23

Wednesday,

May 28

6.1

Inner Products and Norms

lecture-23.pdf Download lecture-23.pdf

HW § 6.1: # 1, 2, 3, 10, 16 b

 

Thursday,

May 29

x-hour Applications of Linear Algebra

Applications.pdf Download Applications.pdf

24

Friday

May 30

6.2

Gram-Schmidt Orthogonalization Process

lecture-24.pdf Download lecture-24.pdf

HW § 6.2: # 1, 2 bcgm, 4, 5, 11, 19 ab

25

Monday,

June  2

6.3

Adjoint of a Linear Operator

lecture-25.pdf Download lecture-25.pdf

HW § 6.3: # 1, 2 ac , 3 ac, 14, 18

26

Wednesday,

June 4

6.4

Normal and Self-Adjoint Operators

HW § 6.4: # 1, 2 ace