Math 24 Lab 2 17 January 2002

Each group should write their solutions up together and turn in a single paper on Wednesday the 23^{rd} . (There is no class on Monday the 21^{st} .)

1. State the replacement theorem.

2. State the dimension theorem.

3. Suppose that $T: V \to V$ is linear and that $S = \{v_1, \ldots, v_n\}$ is a subset of V such that $\{T(v_1), \ldots, T(v_n)\}$ is linearly independent. Show that S is linearly independent.

4. Find an example of a linear map $T : \mathbf{R}^2 \to \mathbf{R}^2$ such that N(T) = R(T).

5. Suppose that $\beta = \{v_1, \ldots, v_n\}$ is a basis for V and that $T: V \to V$ is linear. Prove that if T is one-to-one, then $\{T(v_1), \ldots, T(v_n)\}$ is a basis for V.