Math 24

Lab 2
17 January 2002
Each group should write their solutions up together and turn in a single paper on Wednesday the $23^{\text {rd }}$. (There is no class on Monday the $21^{\text {st }}$.)

1. State the replacement theorem.
2. State the dimension theorem.
3. Suppose that $T: V \rightarrow V$ is linear and that $S=\left\{v_{1}, \ldots, v_{n}\right\}$ is a subset of V such that $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ is linearly independent. Show that S is linearly independent.
4. Find an example of a linear map $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ such that $N(T)=R(T)$.
5. Suppose that $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V and that $T: V \rightarrow V$ is linear. Prove that if T is one-to-one, then $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ is a basis for V.
