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Some Proof Principles

Generally, proving something requires some creativity; there is no recipe for producing
a proof. However, there are some standard techniques that can be used, depending on the
form of the statement you are trying to prove. (Note that “can” does not mean “must.”)
Here are a few of them.

1. To prove a statement of the form “If A, then B,” assume A and prove B. Or, prove the
contrapositive, “If not B, then not A,” by assuming not B and proving not A.

2. To prove a statement of the form “A if and only if B” (A ⇐⇒ B), prove “If A, then
B,” and prove, “If B, then A.”

3. To prove a statement of the form “not A,” use proof by contradiction: Assume A, and
deduce a contradiction, something obviously false or contradictory.

4. To prove a statement of the form “For all vectors x, A(x),” let x be a name for an
arbitrary vector, and prove A(x).

5. To prove a statement of the form “There is a vector x such that A(x),” find a specific
example ~v and prove that A(~v). (For example, prove that A(~0).)

6. To prove a statement of the form “A and B,” prove both A and B.

7. To prove a statement of the form “A or B,” prove “If not A, then B,” or prove “If not
B, then A,” or assume “Not A and not B” and deduce a contradiction. Or, consider
all possible cases, and prove that in some cases A holds, and in other cases B holds.

8. In general, prove something by considering all possible cases separately. You must be
sure the cases you list cover all possibilities. There is an example of a proof like this
on page 4 of this handout.

9. To prove something is unique, assume there are two such things, and prove they are
actually equal.

10. To prove a statement of the form “There is a unique x such that A(x),” prove both
“There is an x such that A(x)” and “the x such that A(x) is unique.” This is called
proving existence and uniqueness.
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Example: Prove that for every nonzero vector ~v ∈ R3 there is a unique plane containing
the origin that is normal to ~v.

Proof: Let ~v be an arbitrary nonzero vector in R3.1 We can write ~v = (a, b, c).
We know from Math 8 that the plane Π with equation

ax + by + cz = 0

has normal vector (a, b, c) = ~v, and we can check (by plugging x = y = z = 0 into the
equation) that it contains the origin. This proves existence.2

To prove uniqueness, suppose that the plane Σ with equation

ax + by + cz + d

contains the origin and is perpendicular to ~v. We must show that Σ equals Π.3

Since the origin is on Σ, by plugging x = y = z = 0 into the equation we can see that
d = 0. We can also see from the equation that a normal vector to Σ is ~n = (a, b, c). Since
Σ is perpendicular to ~v, its normal vector ~n must be parallel to ~v, so ~v must be a scalar
multiple of ~n:

(a, b, c) = ~v = s~n = (sa, sb, sc).

Now we can rewrite the equation for Π,

ax + by + cz = 0,

as
sax + sby + scz = 0.

Since (a, b, c) is not the zero vector, s 6= 0, and we can rewrite the equation for Π by dividing
by s. This gives

ax + by + cz = 0,

which is the equation for Σ. Therefore, Π equals Σ, which is what we needed to show.

1We are using (4) from the previous page. We are about to use (10) as well, proving existence and
uniqueness.

2We are using (5) from the previous page, showing a particular plane has the given property.
3We are using something like (9) from the previous page, showing any other plane with the given property

must equal the one we already found.
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Writing Proofs

A mathematical proof of a statement is a clear, complete, and logically correct argument
that the statement must be true. Here are a few important points about proofs:

1. Proofs are written in mathematical English. This means you should use complete
sentences with correct grammar and punctuation.

2. You should use mathematical formulas, equations, and pictures in a proof, whenever
they help make your proof readable and understandable.

3. Formulas, equations, and pictures should always be explained. A string of equations
without explanations is not a proof.

4. Formulas and equations are included in sentences, and must be punctuated accordingly.
Notice the punctuation in the following proof.

5. Always begin by stating the proposition you are going to prove.

6. Make the logic of your proof clear to your reader. If you are proving the additive
identity of a vector space is unique, it is good to begin with, “Let ~a be an additive
identity. We will prove that ~a = ~0.”

7. How your proof is laid out on the paper matters. Centering equations on their own
lines, and skipping lines between parts of a solution, can make your solution much
more readable. Neatness counts.

8. It is fine to use formulas and results from the text or from class. Be sure you reader
knows what axiom, formula, or result you are using.

9. There is generally more than one correct proof of a theorem, and more than one way
to write up a given proof. Unless a homework or exam problem specifies a particular
approach or technique, you can use any logically valid method of proof

10. The amount of detail needed in a proof depends on the intended reader. For this class,
your intended reader should be a student in the class who does not understand the
material quite as well as you do.

11. The mathematical “we” is common in proofs, but it is fine to use “I,” as in, “Let ~a be
an additive identity. I will prove that ~a = ~0

12. You are not required to use the notation ~x for vectors. However, it should always be
clear when a symbol represents a vector and when it represents a scalar. (“Clear” does
not mean “you can figure it out from context.” It means clear.)
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13. Professor Annalisa Crannell of Franklin and Marshall College has written a booklet
about writing mathematics for her calculus classes. She discusses a number of strategies
and conventions for writing mathematics well. You can find her booklet here:

https://www.fandm.edu/uploads/files/107682389602454187-guide-to-writing.pdf

Professor Steven Kleiman of MIT has written a more advanced guide to writing math-
ematics, intended for undergraduate students who are writing mathematical papers.
You can find his guide here:

http://www.mit.edu/afs/athena.mit.edu/course/other/mathp2/www/piil.html

14. Excellent mathematical writing style embodies several characteristics, of which the
three most important are clarity, clarity, and clarity. It is important to use words
precisely and correctly. Generally, simple declarative sentences and consistent word
use are preferable to variation in sentence structure and vocabulary. The same is true
of most technical writing; the deeper and more complex the ideas, the simpler and more
transparent the writing should be. My favorite quotation about this comes from the
web page “Guidelines for Writing a Phiilosophy Paper” by NYU philosophy professor
James Pryor:4

If your paper sounds as if it were written for a third-grade audience, then
you’ve probably achieved the right sort of clarity.

4http://www.jimpryor.net/teaching/guidelines/writing.html
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Proposition: Suppose that X ⊆ R2 is a nonempty subset of R2 that is closed under addition
and scalar multiplication. (This means that for every ~x and ~y in X, and every scalar a, the
vectors ~x + ~y and a~x are also in X.) Then X must be one of:

1. {~0} (the set whose only element is the zero vector);

2. a line through the origin;

3. all of R2.

Proof: There are three possible cases for X:

1. X contains no nonzero vectors;

2. X contains at least one nonzero vector, and all nonzero vectors in X are parallel;

3. X contains at least one pair of nonzero vectors that are not parallel.

We consider each case separately.

1. We will show that if X contains no nonzero vectors, then X = {~0}.
X must contain at least one vector, since X is nonempty. Therefore, since X does not
contain any nonzero vectors, X must contain the zero vector, and we have X = {~0}.

2. We will show that if X contains at least one nonzero vector, and all nonzero vectors
in X are parallel, then X is a line through the origin.

Let ~v be some nonzero element of X. If ~w is any other element of X, either ~w = ~0 or
~w is parallel to ~v. In either case, ~w is a scalar multiple of ~v; that is, ~w = t~v for some
scalar t. This shows that every element of X is a scalar multiple of ~v.

Now, because X is closed under multiplication by scalars, every scalar multiple of ~v
must be in X. Therefore X must consist exactly of all the scalar multiples of ~v,

X = {t~v | t ∈ R}.

That is, X is the line through the origin in the direction of ~v.

3. We will show that if X contains contains at least one pair of nonzero vectors that are
not parallel, then X is all of R2.

Let ~v and ~w be nonzero, nonparallel elements of X. Because X is closed under both
addition and multiplication by scalars, every vector of the form s~v + t~w must be in X.
To show X = R2, we must show every vector (c1, c2) ∈ R2 can be written in the form
s~v + t~w.

Method 1: Argue geometrically. Since ~v and ~w are not parallel, you can get from (0, 0)
to any point in the plane by proceeding some distance in the direction of ~v and then
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some distance in the direction of ~w. That is, you can express any element of R2 as the
sum of a scalar multiple of ~v and a scalar multiple of ~w.

Specifically, let O be the origin, and P a point with coordinates (c1, c2); then
−→
OP is

the vector (c1, c2). Let ` be the line through O parallel to ~v and `′ be the line through
P parallel to ~w. Since ` and `′ are not parallel, they intersect at some point Q, as in
the picture.

` `′

0

P

Q

By the geometric representation of vector addition,

−→
OQ +

−→
QP =

−→
OP = (c1, c2).

Because O and Q are both on a line ` parallel to ~v, it follows that
−→
OQ is parallel to ~v.

That is, it is a scalar multiple of ~v, so we can write
−→
OQ = s~v. Similarly, since Q and

P are both on `′, we can write
−→
QP = t~w. Now we have

(c1, c2) =
−→
OQ +

−→
QP = s~v + t~w.

This is what we needed to show.

Method 2: Argue algebraically.

Suppose ~v = (a1, a2) and ~w = (b1, b2). We must show that for any choice of (c1, c2) we
can find real numbers s and t such that

s(a1, a2) + t(b1, b2) = (c1, c2).

That is, we must show we can always solve the system of linear equations

a1s + b1t = c1

a2s + b2t = c2

for s and t.
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(Note: I was able to come up with the following argument because I already know
linear algebra. It uses Cramer’s Rule, page 224 of the textbook. You might come up
with a similar argument by trying to solve the system of linear equations, and seeing
what you need to assume in order to solve it.)

We claim that if a1b2 = a2b1, then ~v and ~w are parallel. Check this by cases:

(a) If a1 = 0, then a1b2 = 0, so by assumption a2b1 = 0. Since (a1, a2) = ~v 6= (0, 0),
and a1 = 0, we must have a2 6= 0, and so b1 = 0. In this case, ~v = (0, a2) and
~w = (0, b2) are parallel.

(b) If a2 = 0, a similar argument shows ~v and ~w are parallel.

(c) If a1 6= 0 and a2 6= 0, we can divide a1b2 = a2b1 by a1a2 to get

b2
a2

=
b1
a1

= d,

from which we have

d(a1, a2) = (da1, da2) =

(
b1
a1

a1,
b2
a2

a2

)
= (b1, b2),

showing ~v and ~w are parallel.

This proves the claim.

Now, since ~v and ~w are not parallel, the claim tells us we must have a1b2 6= a2b1, and
so a1b2 − a2b1 6= 0, In that case, we can check that

s =
c1b2 − c2b1
a1b2 − a2b1

t =
a1c2 − a2c1
a2b2 − a2b1

is a solution of the system of linear equations.

This is what we needed to show to complete the argument for Case 3. Therefore, this
completes the proof.
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Exercise: Prove that the following subsets of R3 are equal:

X = {(a, b, c) ∈ R3 | a + c = b};

Y = {s(1, 1, 0) + t(0, 1, 1) | s ∈ R& t ∈ R}.

Note: Two sets are equal if and only if they have exactly the same elements. So, to
prove two sets of vectors X and Y are equal, prove:

For every vector v,
v ∈ X ⇐⇒ v ∈ Y.
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