Selected Solutions to Homework for Math 24 Winter 2021

As of January 11, 2021

Homework Assignment \#1 (from January 8th):

1. Show that in an ordered field \mathbf{F}, we always have $1>0$. (Start by showing that $(-1)^{2}=1$.) Conclude that if $x<0$ and $y<0$, then $x y>0$.

ANS: From the Proposition proved in lecture we know that additive inverses are unique and that $-a=(-1) \cdot a$ for any $a \in \mathbf{F}$. Since $-1+1=0$, it follows that $-(-1)=1$. But $-(-1)=(-1)(-1)$. Hence $(-1)^{2}=1$. Assume to the contrary of what we want to prove, that $1<0$. Then $-1>0$. Thus $(-1)(-1)=1>0$. But this contradicts our assumption. Hence $1>0$.

Now suppose that $x<0$ and $y<0$. Then $-x>0$ and $-y>0$. This means $(-x)(-y)>0$. But $(-x)(-y)=(-1) x(-1) y=(-1)^{2} x y=1 \cdot x y=x y$. Hence $x y>0$.
2. Is it possible to make the complex numbers \mathbf{C} into an ordered field?

ANS: NO. Suppose that \mathbf{C} had an ordering. Then we must have either $i>0$ or $-i>0$. In the first case, we would have $-1=(i)^{2}>0$, but we saw above that $1>0$. So we have a contradiction. Since $(-i)^{2}$ is also -1 , we have the same problem. So there is not way to make \mathbf{C} into an ordered field.
3. If V is a vector space over \mathbf{F} and $a x=\mathbf{0}$, for some $a \in \mathbf{F}$ and $x \in V$, then either $a=0$ or $x=\mathbf{0}$. (Here $0 \in \mathbf{F}$ and $\mathbf{0}$ is the zero vector in V.)

ANS: Suppose that $a \neq 0$. Then $a^{-1} \cdot(a x)=a^{-1} \mathbf{0}=\mathbf{0}$ by Theorem 1.2(a) in the text. But $a^{-1}(a x)=\left(a^{-1} a\right) x=1 \cdot x=x$. Hence $x=\mathbf{0}$. The result follows.
4. Problem \#16 in §1.2.

ANS: Since $\mathbf{Q} \subset \mathbf{R}, r \cdot M \in V$ for all $r \in \mathbf{Q}$. Axioms VS1-VS4 hold since they do not involve scalar multiplication. Axiom VS5 holds since $1 \in \mathbf{Q}$. Axioms VS6-VS8 hold for all $a, b \in \mathbf{Q}$ since $a, b \in \mathbf{R}$. Therefore V is a vector space over the rationals.
5. Problem \#18 in §1.2.

ANS: To see that V is not a vector space, notice that $(1,0)+(2,0)=(5,0)$ and $(2,0)+(1,0)=(4,0)$. Hence Axiom VS1 is violated.

Comment: Note that you must give a specific example to show this.
6. Problem $\# 21$ in $\S 1.2$.

ANS: We have to verify VS1-VS8. For example, to verify VS1, we notice that since both V and W satisfy VS1,

$$
\left(v_{1}, w_{1}\right)+\left(v_{2}, w_{2}\right)=\left(v_{1}+v_{2}, w_{1}+w_{2}\right)=\left(v_{2}+v_{1}, w_{2}, w_{1}\right)=\left(v_{2}, w_{2}\right)+\left(v_{1}, w_{1}\right) .
$$

The proof of VS2 is similar. To verify VS3, we let $0=\left(0_{V}, 0_{W}\right)$. For VS4, let $-(v, w)=(-v,-w)$. VS5 is straightforward. For VS6

$$
a b(v, w)=(a b v, a b w)=a(b v, b w)=a \cdot b \cdot(v, w)
$$

Etc.

