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The Ground Rules

1 We should always start each session by making sure we are
recording.

2 Everyone should be sure to familiarize themselves with our
web page: math.dartmouth.edu/~m24w21/

3 In this pandemic world, it is just a fact of life that we may
have to adapt to circumstances and the term evolves. Hence
details and requirements for the course may change. It is your
responsibility to keep apprised of any changes.
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What Are We Doing Here

1 First and foremost, this is a class on Linear Algebra.

2 But is also a course stressing mathematical formalism and
proof. Proof writing will be a new experience for many of you.
The best way to learn is by doing (and asking questions
during class and especially in office hours).

3 We will start by seeing that the basic properties we use with
directed line segments—called vectors in Physics and/or
Math 8 at Dartmouth—can be abstracted in a structure we
will call a vector space. Then general properties of abstract
vector spaces can be used to study many mathematical
concepts such as polynomials and differential equations.

4 But let’s not get too far ahead of ourselves and begin with a
review of where we come from.
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The Cast of Characters

Let’s recall that sorts of numbers we’ve worked with in our calculus
courses up until now.

The natural numbers N = { 1, 2, 3, . . . }. The choice not to
include 0 in N is a controversial one. Computer scientists
would object.

The integers, or the set of whole numbers, is the set
Z = −N ∪ {0} ∪N = { 0,±1,±2, . . . }.
The rational numbers, or the set of fractions, is the set

Q =
{ a

b
: a ∈ Z and b ∈ N

}
.

Remark (A Field)

The rational numbers, Q, are special as they form what is called a
field. Informally, this means we can do all the usual arithmetic
operations and stay inside Q.
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Fields

Definition

A field is a set F containing at least two elements 0 and 1
equipped with operations + and · such that for all x , y , z ∈ F we
have x + y ∈ F and x · y = xy ∈ F and

1) x + y = y + x 1)′ xy = yx
2) x + (y + z) = (x + y) + z 2)′ x(yz) = (xy)z
3) x + 0 = x 3)′ x · 1 = x
4) there exists −x 4)′ if x 6= 0 there exists x−1

such that −x + x = 0 such that xx−1 = 1, and
5) x(y + z) = xy + yz .

return

Example

Of course the rational numbers Q = { a
b : a ∈ Z and b ∈ N }

satisfy all these familiar rules of arithmetic. Hence Q is a field. But
there are lots of others.
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A Field with Four Elements

Example

Let F4 = { 0, 1, a, b }. Then define addition and multiplication as
follows

+ 0 1 a b

0 0 1 a b

1 1 0 b a

a a b 0 1

b b a 1 0

· 0 1 a b

0 0 0 0 0

1 0 1 a b

a 0 a b 1

b 0 b 1 a

Then it is possible to show that F4 is a field. However in all
honesty, it would be tedious beyond belief to check this directly.
Fortunately, there are other techniques—from abstract
algebra—that allow us to see this from general principles. In
Math 24, we will accept that F4 is a field. return
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The Point

1 Honestly, we won’t worry too much about strange objects like
F4 in this course. I introduced it just to illustrate that there
are lots more mathematical structures out there which we
might not imagine are fields at first blush.

2 Therefore, if we are faced with question “Is it always true the
0 · a = 0 in any field?”, then we have to decide if this is
always true in any field F. Is it?

3 In a different course, we might worry about the following.
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In a Different Course

Proposition

Let F be a field. If a ∈ F, then the “additive inverse” −a is unique. That
is, if x + a = 0, then x = −a. In particular, (−1) · a = −a for all a ∈ F.

Proof.

Suppose that x + a = 0. Then −a + (x + a) = −a + 0. Now since 0 is the
additive identity and addition is commutative, −a + (a + x) = −a. Since
addition is associative, −a = (−a + a) + x = 0 + x = x .
This proves the first assertion. Then
(−1)a + a = (−1)a + (1)a = (−1 + 1)a = 0 · a = 0. Thus by the first part,
(−1)a = −a.

Question

If x ∈ F4, what is −x? Recall
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Ordered Fields

As our example of a field with 4 elements shows, there is more to
the “good old arithmetic” we’re used to than just the algebraic
axioms of a field. In many applications, we want more structure!

Definition

We say that a field F is ordered if there is a subset P ⊂ F \ {0}
such that

1 F is the disjoint union of P, {0}, and −P.

2 If a, b ∈ P, then a + b ∈ P and ab ∈ P.

We say that x > 0 if x ∈ P and x < y if y − x ∈ P. We call the
pair (F,P), or sometimes (F , <) an ordered field.

Remark

If a is an element in an ordered field, either a is positive, −a is
positive, or a = 0. Alternatively, given a, b in an ordered field,
either a < b, b < a, or a = b. In particular, F4 can’t be made into
an ordered field! Why not?
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Not a Rational World

Example

Let P = { a
b ∈ Q : a, b ∈ N }. Then (Q,P) is an ordered field that

we’ve held dear to our hearts since grade school.

The rationals were fine for middle school, but we quickly see
that there are numbers like

√
3, e, and π that are not rational.

Thus if we want to model the real world, we need to enlarge
Q so that, for example, every cubic polynomial crosses the
x-axis (that is, has a root). We also want to write down a
formula for the area of a circle of radius one, or to describe
exponential growth, and generally perform many other tasks
that take us outside of the “rational” world.

Since we still want to do arithmetic using the usual axioms
that make Q a field, we want a field R that contains not only
all the fractions in Q but all the other “numbers” we need to
model the world we live in. That is, the “real” world.
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The Real Numbers

Remark

Without much fanfare in High school, it was asserted that there
was a field R—called the field of Real numbers—such that Q ⊂ R
and “everything we wanted’ was in R. Formally, we want R to be a
complete ordered field in that it satisfies the following property:
Given a non-empty set S ⊂ R such that there is a b ∈ R (called an
upper bound for S) such that s ≤ b for all s ∈ S , then there is a
u ∈ R such that

1 s ≤ u for all s ∈ S , and

2 if s ≤ t for all s ∈ S , then u ≤ t.

Then u is called the least upper bound of S . We write u = lub(S).
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Complete is the Thing

Example

Let
S = { r ∈ Q : r2 < 3 }.

Then S is bounded above and
√

3 = lub(S). The real point of this
example—no pun intended—is that in the field Q, the set S is still
bounded above, but it has no least upper bound.

Remark

Remarkably, the completeness axiom tells us that R has to contain
just about everything we want. Just as in all the courses that have
come before, we just assume that the real numbers exist, are a
complete ordered field, and that they form the playground we are
used to.
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An Example

Proposition

Let Q(
√

2) = { a + b
√

2 ∈ R : a, b ∈ Q }. Note that 0, 1 ∈ Q(
√

2). Then
Q(
√

2) is a field with the operations inherited from R. Since Q(
√

2) ⊂ R,
we say that is is a subfield of R.

Proof.

It is straightforward to check that Q(
√

2) is closed under addition and
multiplication. For example,
(a + b

√
2)(a′ + b′

√
2) = aa′ + 2bb′ + (ab′ + a′b)

√
2 ∈ Q(

√
2).

Since Q(
√

2) ⊂ R and 0, 1 ∈ Q(
√

2), it is clear that all the axioms of a
field are satisfied with the exception of 4) and 4′). But
−(a + b

√
2) = −a + (−b)

√
2 ∈ Q(

√
2) so 4) is easy. But if

a + b
√

2 6= 0, then a2 − 2b2 6= 0 (since
√

2 /∈ Q) and

(a + b
√

2)−1 =
1

a + b
√

2
· a− b

√
2

a− b
√

2
=

a

a2 − 2b2
+

−b
a2 − 2b2

√
2

is also in Q(
√

2). Therefore Q(
√

2) is a field.
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Sometimes You Want it All

Remark

Sometimes even the real numbers are not enough. For example, the
equation x2 = −1 has no solution in R. So we invent a solution and call
it i . Then the complex numbers are the set of formal sums

C = R(i) = { x + iy : x , y ∈ R }

equipped with the operations

(x + iy)(x ′ + iy ′) = (x + x ′) + i(y + y ′) and

(x + iy)(x ′ + iy ′) = xx ′ − yy ′ + i(xy ′ + x ′y).

We accept the fiction that our high schools taught us that C is field
containing R as a subfield (via x 7→ x + i0). Since it may have been a
while since you thought about complex numbers, it might be wise to skim
Appendix D in our text.
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Chill Folks

Remark

In Math 24, we are primarily concerned with the usual fields F
where F is either Q, R, or sometimes C. Even so, we need to be
aware that even in this rarefied domian, there are subfields like
Q(
√

2) out there. For more on fields, see Appendix C.
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Enough for one Go

With all due apologies to Scott Adams, perhaps it is time to take a
break.
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Back At It

1 It is my plan to break up our lectures into two or three bits.

2 This not only gives us a chance to rest and/or ask questions,
but it also breaks the videos up.

3 But I will need to be reminded from time to time to restart
the recording.
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Let’s Get Started

Definition

A vector space over a field F is a set V together with operations
(x , y) 7→ x + y from V × V to V (called addition) and
(a, v) 7→ a · v from F× V → V (called scalar multiplication) such
that the following axioms hold for all x , y , z ∈ V and a, b ∈ F.

vs1: x + y = y + x .

vs2: (x + y) + z = x + (y + z).

vs3: There is an element 0 ∈ V such that x + 0 = x for all x .

vs4: For each x ∈ V there is a −x ∈ V such that −x + x = 0.

vs5: For all x ∈ V , 1 · x = x .

vs6: (ab) · x = a · (b · x).

vs7: a · (x + y) = a · x + a · y .

vs8: (a + b) · x = a · x + b · x .
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Don’t Panic

Remark

Just as for the abstract notion of a field, a vector space is just an
abstraction of a well known toy from our old mathematical playpen.

Let V = R2 = { (x , y) : x , y ∈ R } and F = R. Then we defined
“vector addition” and “scalar multiplication” by
(x , y) + (x ′, y ′) = (x + x ′, y + y ′) and a · (x , y) = (ax , ay). If we
agree to think of V as directed line segments in the plane, then V
is just the set of 2-vectors with vector addition and scalar
multiplication as defined in Math 8. Surely your previous
instructors observed that axioms VS1–VS8 are satisfied for V while
you ignored him or her.
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The Example

Example

Let F be a field and n ∈ N. Then the set of n-tuples
Fn = { (a1, a2, . . . , an) : ak ∈ F } is a vector space with the
operations (a1, . . . , an) + (a′1, . . . , a

′
n) = (a1 + a′1, . . . , an + a′n) and

a · (a1, . . . , an) = (aa1, . . . , aan).

Remark

Checking that the axioms VS1–VS8 hold isn’t either hard or
interesting. When F = R and n = 2, then we can draw pretty
pictures as in §1.1 of the text. But if F 6= R or n > 3, then we just
get an algebraic object. While the vector space V = Fn is a very
concrete and very common example of a vector space over F, it is
not the only example we will work with.
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Baby Steps

Example

Let F be a field. Then Mm×n(F) is the set of m × n matrices
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn


with each aij ∈ F. If A ∈ Mm×n(F) then we let Aij be the entry in
the i th-row and j th-column. It is easy, but again tedious, to check
that we can make Mm×n(F) into a vector space over F by
(A + B)ij = Aij + Bij and (rA)ij = rAij . The zero element O is the
zero matrix: Oij = 0 for all i and j . If m = n, then elements of
Mn×n(F) are called square matrices.
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Polynomials

Example

If F is a field, then let P(F) the set of formal expressions
f (x) = a0 + a1x

1 + · · ·+ anx
n with n ∈ N ∪ {0} and each ak ∈ F.

(Here, xk is just symbol that acts as a place holder.) If an 6= 0,
then we say that f (x) is a polynomial of degree n with coefficients
in F. We call ak the coefficient of xk . If all the ak = 0, then f (x) is
called the zero polynomial and we define its degree to be −1. We
declare two polynomials to be equal if their nonzero coefficients are
equal. In particular, of f (x) and g(x) are in P(F), we can assume
f (x) = a0 + a1x

1 + · · ·+ anx
n and g(x) = b0 + b1x

1 + · · ·+ bnx
n

(by adding zero coefficients if necessary) and define
(f + g)(x) = (a0 + b0) + (a1 + b1)x1 + · · · (an + bn)xn. and
(af )(x) = aa0 + aa1x

1 + · · ·+ aanx
n. Then P(F) becomes a vector

space over F.
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What? I Know What a Polynomial Is!

Remark

If we are working over a reasonable ground field, like F = R or
F = C, then there is no harm in thinking of a polynomial as a
function of the form f (x) = a0 + a1x + · · ·+ anx

n. This is because
two polynomial functions that agree everywhere must be the zero
function. Why? But if F = F4, then you can check that for all
s ∈ F4, s4 = s. Since we already saw that s + s = 0 in F4, the
polynomial f (x) = x + x4 is the zero function when viewed as a
the function s 7→ s + s4 from F4 to itself. But f (x) is is a
polynomial of degree 4 in P(F4) and is not the zero element in the
vector space P(F4). Fortunately, this is not the kind of thing we
are going to emphasize in Math 24.
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Functions

Example

Let F (X ,F) be the set of all functions from a set X to the field F.
Then the F (X ,F) is a vector space over F with respect to the
operations (f + g)(x) = f (x) + g(x) and (af )(x) = af (x) for all
x ∈ X and a ∈ F. The zero element is the zero function: f (x) = 0
for all x ∈ X .

Example

An element σ ∈ F (N,F) is called a sequence in F. If an = σ(n),
then we usually write (an) in place of σ. Thus the set V of
sequences in F is a vector space over F with
(an) + (bn) = (an + bn) and a · (an) = (aan). Note that the zero
element here is just the zero sequence (an) with an = 0 for all
n ≥ 0
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Enough

1 That is enough for today.
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