Math 24: Winter 2021 Lecture 1

Dana P. Williams
Dartmouth College
January 8, 2021

(1) Ok, so class ends at 11:25! I am really sorry about running over-not by little, but by a lot-on Friday. All I can say is that it was a heck of a week.
(2) But we need to keep going, so let's first be sure that we are recording.
(3) Remember that my office hours (on zoom) are T 2-3 and Th 10-11. For details, see
math.dartmouth.edu:~dana/office_hours/
(4) But first, are there any questions from last time?

Definition

A vector space over a field \mathbf{F} is a set V together with operations $(x, y) \mapsto x+y$ from $V \times V$ to V (called addition) and
$(a, v) \mapsto a \cdot v$ from $\mathbf{F} \times V \rightarrow V$ (called scalar multiplication) such that the following axioms hold for all $x, y, z \in V$ and $a, b \in \mathbf{F}$.
VS1: $x+y=y+x$.
VS2: $(x+y)+z=x+(y+z)$.
VS3: There is an element $0 \in V$ such that $x+0=x$ for all x.
VS4: For each $x \in V$ there is a $-x \in V$ such that $-x+x=0$.
VS5: For all $x \in V, 1 \cdot x=x$.
VS6: $(a b) \cdot x=a \cdot(b \cdot x)$.
VS7: $a \cdot(x+y)=a \cdot x+a \cdot y$.
VS8: $(a+b) \cdot x=a \cdot x+b \cdot x$.

The Example

Example

Let \mathbf{F} be a field and $n \in \mathbf{N}$. Then the set of n-tuples $\mathbf{F}^{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{k} \in \mathbf{F}\right\}$ is a vector space with the operations $\left(a_{1}, \ldots, a_{n}\right)+\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)=\left(a_{1}+a_{1}^{\prime}, \ldots, a_{n}+a_{n}^{\prime}\right)$ and $a \cdot\left(a_{1}, \ldots, a_{n}\right)=\left(a a_{1}, \ldots, a a_{n}\right)$.

Example

Let $\mathscr{F}(X, \mathbf{F})$ be the set of all functions from a set X to the field \mathbf{F}. Then the $\mathscr{F}(X, \mathbf{F})$ is a vector space over \mathbf{F} with respect to the operations $(f+g)(x)=f(x)+g(x)$ and $(a f)(x)=a f(x)$ for all $x \in X$ and $a \in \mathbf{F}$. The zero element is the zero function: $z(x)=0$ for all $x \in X$.
(1) To prove that $\mathscr{F}(X, F)$ is a vector space, we have to carefully check that axioms VSI-VS8 all hold.
(2) For example, VS1 says that addition is commutative: $f+g=g+f$ for all $f, g \in \mathscr{F}(X, \mathbf{F})$. But for any $x \in X$, $(f+g)(x)=f(x)+g(x)=g(x)+f(x)=(g+f)(x)$. This means exactly that $f+g=g+f$. Checking that addition is associative (aka VS2) is similar.

More Checking

(3) To check axiom VS3, we need to see that the zero function, z, acts as a additive identity-that is, the as the zero vector 0_{v} in $V=\mathscr{F}(X, F)$ so that $f+z=f$ for any $f \in \mathscr{F}(X, F)$. But $(f+z)(x)=f(x)+z(x)=f(x)+0=f(x)$.
(4) To check VS4, we need to see each $f \in \mathscr{F}(X, F)$ has an additive inverse $-f$ so that $-f+f=z$. But we just want $(-f)(x)=-f(x)$.
(0) VS5 is almost automatic: $(1 \cdot f)(x)=1 \cdot f(x)=f(x)$.
(0) I'll leave it to you to check VS6, VS7, and VS8.
(1) Thus $\mathscr{F}(X, \mathbf{F})$ is a vector space over \mathbf{F} for any set X and any field \mathbf{F}.

Sequences

Example

An element $\sigma \in \mathscr{F}(\mathbf{N}, \mathbf{F})$ is called a sequence in \mathbf{F}. If $a_{n}=\sigma(n)$, then we usually write $\left(a_{n}\right)$ in place of σ. Thus the set V of sequences in \mathbf{F} is a vector space over \mathbf{F} with
$\left(a_{n}\right)+\left(b_{n}\right)=\left(a_{n}+b_{n}\right)$ and $a \cdot\left(a_{n}\right)=\left(a a_{n}\right)$. Note that the zero element here is just the zero sequence $\left(a_{n}\right)$ with $a_{n}=0$ for all $n \geq 0$

Vector Spaces

Question

What if we let $V=\{(x, y): x, y \in \mathbf{R}\}$ but we define $(x, y)+\left(x^{\prime}, y^{\prime}\right)=\left(x x^{\prime}, y y^{\prime}\right)$ and $a \cdot(x, y)=(a x, a y)$. Is V a vector space over \mathbf{R} ?

Question

Let $V=\{0\}$ be the set containing a single vector 0 . Define $0+0=0$ and $a \cdot 0=0$ for all $a \in \mathbf{F}$. Is V a vector space over \mathbf{F} ?

Definition

We call $V=\{0\}$ viewed as a vector space over \mathbf{F} the zero vector space over \mathbf{F}.

Example

Example

Let $V=\mathbf{R}^{n}$. Then V is our favorite example of a vector space over \mathbf{R}. What if we retain the usual notion of vector addition in \mathbf{R}^{n} but let $\mathbf{F}=\mathbf{Q}$ act in the usual way by scalar multiplication. Is \mathbf{R}^{n} then a vector space over \mathbf{Q} ? How could we generalize this?

Break Time

- Let's Take a Break.

Some Theory

Theorem

Let V be a vector space over \mathbf{F}. If $x, y \in V$, then there is a unique vector $z \in V$ such that $z+x=y$.

Proof.

Fix $x, y \in V$. Let $z=y+(-x)$. (We usually write $y-x$ in place of $y+(-x)$.) Then $z+x=(y+-x)+x=y+(-x+x)=y+0=y$ as required.
This proves existence.
On the other hand, if $z \in V$ is such that $z+x=y$, then $(z+x)+(-x)=y+(-x)$. Then the left-hand side is $z+(x+(-x))=z+0=z$ and every solution must be $y-x$. This proves uniqueness.

Corollary

If $x \in V$, then the additive inverse, $-x$ from VS4, is unique. That is if $z+x=0$, then $z=-x$.

Proof.

This is immediate from the theorem-just let $y=0$.

More

Theorem (Theorem 2.1 in the Text)

Let V be a vector space over \mathbf{F}.
(1) For all $x \in V, 0 \cdot x=0_{V}$. (Here, I have written 0_{V} to make it clear that 0_{V} is the zero vector in V and not the scalar $0 \in \mathbf{F}$.)
(2) $a \cdot 0_{V}=0_{V}$ for all $a \in \mathbf{F}$.
(3) $(-a) \cdot x=-(a \cdot x)=a \cdot(-x)$ for all $a \in \mathbf{F}$ and $x \in V$. (What does each minus sign mean?)

Proof.

(1) We have $0 \cdot x=(0+0) \cdot x=0 \cdot x+0 \cdot x$. But we also have $0 \cdot x=0 v+0 \cdot x$. Hence $0 \cdot x=0 v$ by the previous theorem. (Or you could just add $-0 \cdot x$ to both sides.
(2) The proof is similar to (1): $a \cdot 0_{v}=a \cdot\left(0_{v}+0_{v}\right)=a \cdot 0_{v}+a \cdot 0_{v}$.
(3) Note that $(-a) \cdot x+a \cdot x=(-a+a) \cdot x=0 \cdot x=0 v$. Since the additive inverse is unique, we must have $(-a) \cdot x=-(a \cdot x)$ by part 1 . Similarly, $a \cdot(-x)+a \cdot x=a \cdot(-x+x)=a \cdot 0_{v}=0_{v}$ by part 2. Hence $a \cdot(-x)=-(a \cdot x)$.

A Corollary

Corollary

If V is a vector space over \mathbf{F}, then for all $x \in V$, we have $-x=(-1) \cdot x$.

Break Time

- Time for a break and questions.

Subspaces

Definition

Let W be a subset of a vector space V over \mathbf{F}. We call W as subspace of V if W is a vector space over \mathbf{F} with the operations of addition and scalar multiplication inherited from V.

Example

If V is a vector space over \mathbf{F}, then the zero subspace $\left\{0_{V}\right\}$ and V itself are always subspaces.

Theorem

Let V be a vector space over \mathbf{F}. A subset W of V is a subspace of V if and only if
(1) $0_{v} \in W$,
(2) $x, y \in W$ implies $x+y \in W$, and
(3) $x \in W$ implies $c \cdot x \in W$ for all $c \in \mathbf{F}$.

Proof

Proof.

Suppose that W is a subspace of V. Then items 2 and 3 are immediate. If 0_{w} is the zero vector of W, then $0_{w}+0_{w}=0_{w}$. But we also have $0_{V}+0_{w}=0_{w}$. Since both equations hold in V, we must have $0_{V}=0_{W}$ by our uniqueness result. Hence $0_{V} \in W$. Now suppose that items 1,2 , and 3 hold. Then VS1, VS2, VS5, VS6, VS7, and VS8 all hold because they hold in V. ©๐ Since $0_{V} \in W$, we can let $0_{W}=0_{V}$ and then VS3 holds. So we just have to check each $x \in W$ has an additive inverse in W. But $-x=(-1) \cdot x \in W$, so VS5 holds as well.

A Great Boon to Math 24-Kind

Example

Let $W=C(\mathbf{R})$ the collection of continuous functions from \mathbf{R} to \mathbf{R}. Then $W \subset \mathscr{F}(\mathbf{R}, \mathbf{R})$. We already know, painfully, that $\mathscr{F}(\mathbf{R}, \mathbf{R})$ is a vector space over \mathbf{R}. Since the zero function is continuous, and since the sum of continuous functions is continous, and since a multiple of a continuous function is continuous, all three conditions of our subspace theorem are met and $C(\mathbf{R})$ is a subspace of $\mathscr{F}(\mathbf{R}, \mathbf{R})$. Just as importantly, this means $C(\mathbf{R})$ is a real-vector space in its own right.

Another Important Example

Example

Let $n \in \mathbf{N}$ and let $\mathrm{P}_{n}(\mathbf{F})$ be the set of polynomials with coefficients in \mathbf{F} that have degree at most n. Clearly, $\mathrm{P}_{n}(\mathbf{F}) \subset \mathbf{P}(\mathbf{F})$. Since the zero polynomial has degree -1 , it belongs to $P_{n}(\mathbf{F})$. Furthermore, the sum of two polynomials of degree at most n is a polynomial of degree at most n. Similarly, a multiple of a polynomial of degree at most n has degree at most n. Hence $P_{n}(\mathbf{F})$ is a subspace of $P(\mathbf{F})$ and hence its a vector space over \mathbf{F}.

Question

What if we looked as the subset W of polynomials of degree equal to n (and we're careful and include the zero polynomial as well)? Is W a subspace?

Enough

(1) That is enough for today.

