Math 24: Winter 2021 Lecture 1

Dana P. Williams

Dartmouth College

January 8, 2021

The Ground Rules

- Ok, so class ends at 11:25! I am really sorry about running over—not by little, but by a lot—on Friday. All I can say is that it was a heck of a week.
- ② But we need to keep going, so let's first be sure that we are recording.
- Remember that my office hours (on zoom) are T 2-3 and Th 10-11. For details, see math.dartmouth.edu:~dana/office_hours/
- Out first, are there any questions from last time?

Some Review

Definition

A vector space over a field \mathbf{F} is a set V together with operations $(x,y)\mapsto x+y$ from $V\times V$ to V (called addition) and $(a,v)\mapsto a\cdot v$ from $\mathbf{F}\times V\to V$ (called scalar multiplication) such that the following axioms hold for all $x,y,z\in V$ and $a,b\in \mathbf{F}$.

$$VS1: x + y = y + x.$$

$$VS2: (x + y) + z = x + (y + z).$$

VS3: There is an element $0 \in V$ such that x + 0 = x for all x.

VS4: For each $x \in V$ there is a $-x \in V$ such that -x + x = 0.

VS5: For all $x \in V$, $1 \cdot x = x$.

$$VS6: (ab) \cdot x = a \cdot (b \cdot x).$$

$$VS7: a \cdot (x + y) = a \cdot x + a \cdot y.$$

VS8:
$$(a+b) \cdot x = a \cdot x + b \cdot x$$
.

The Example

Example

Let **F** be a field and $n \in \mathbb{N}$. Then the set of *n*-tuples

$$\mathbf{F}^n = \{ (a_1, a_2, \dots, a_n) : a_k \in \mathbf{F} \}$$
 is a vector space with the operations $(a_1, \dots, a_n) + (a'_1, \dots, a'_n) = (a_1 + a'_1, \dots, a_n + a'_n)$ and $a \cdot (a_1, \dots, a_n) = (a_1, \dots, a_n)$.

Functions

Example

Let $\mathscr{F}(X,\mathbf{F})$ be the set of all functions from a set X to the field \mathbf{F} . Then the $\mathscr{F}(X,\mathbf{F})$ is a vector space over \mathbf{F} with respect to the operations (f+g)(x)=f(x)+g(x) and (af)(x)=af(x) for all $x\in X$ and $a\in \mathbf{F}$. The zero element is the zero function: z(x)=0 for all $x\in X$.

- **1** To prove that $\mathscr{F}(X, \mathbf{F})$ is a vector space, we have to carefully check that axioms VSI-VSS all hold.
- ② For example, VS1 says that addition is commutative: f+g=g+f for all $f,g\in \mathscr{F}(X,\mathbf{F})$. But for any $x\in X$, (f+g)(x)=f(x)+g(x)=g(x)+f(x)=(g+f)(x). This means exactly that f+g=g+f. Checking that addition is associative (aka VS2) is similar.

More Checking

- **3** To check axiom VS3, we need to see that the zero function, z, acts as a additive identity—that is, the as the zero vector 0_V in $V = \mathscr{F}(X, \mathbf{F})$ so that f + z = f for any $f \in \mathscr{F}(X, \mathbf{F})$. But (f + z)(x) = f(x) + z(x) = f(x) + 0 = f(x).
- **①** To check VS4, we need to see each $f \in \mathcal{F}(X, \mathbf{F})$ has an additive inverse -f so that -f + f = z. But we just want (-f)(x) = -f(x).
- **5** VS5 is almost automatic: $(1 \cdot f)(x) = 1 \cdot f(x) = f(x)$.
- I'll leave it to you to check VS6, VS7, and VS8.
- Thus $\mathscr{F}(X, \mathbf{F})$ is a vector space over \mathbf{F} for any set X and any field \mathbf{F} .

Sequences

Example

An element $\sigma \in \mathscr{F}(\mathbf{N},\mathbf{F})$ is called a sequence in \mathbf{F} . If $a_n = \sigma(n)$, then we usually write (a_n) in place of σ . Thus the set V of sequences in \mathbf{F} is a vector space over \mathbf{F} with $(a_n) + (b_n) = (a_n + b_n)$ and $a \cdot (a_n) = (aa_n)$. Note that the zero element here is just the zero sequence (a_n) with $a_n = 0$ for all n > 0

Vector Spaces

Question

What if we let $V = \{(x,y) : x,y \in \mathbf{R}\}$ but we define (x,y) + (x',y') = (xx',yy') and $a \cdot (x,y) = (ax,ay)$. Is V a vector space over \mathbf{R} ?

Question

Let $V = \{0\}$ be the set containing a single vector 0. Define 0 + 0 = 0 and $a \cdot 0 = 0$ for all $a \in \mathbf{F}$. Is V a vector space over \mathbf{F} ?

Definition

We call $V = \{0\}$ viewed as a vector space over ${\bf F}$ the zero vector space over ${\bf F}$.

Example

Example

Let $V = \mathbf{R}^n$. Then V is our favorite example of a vector space over \mathbf{R} . What if we retain the usual notion of vector addition in \mathbf{R}^n but let $\mathbf{F} = \mathbf{Q}$ act in the usual way by scalar multiplication. Is \mathbf{R}^n then a vector space over \mathbf{Q} ? How could we generalize this?

Break Time

• Let's Take a Break.

Some Theory

$\mathsf{Theorem}$

Let V be a vector space over \mathbf{F} . If $x, y \in V$, then there is a unique vector $z \in V$ such that z + x = y.

Proof.

Fix $x, y \in V$. Let z = y + (-x). (We usually write y - x in place of y + (-x).) Then z + x = (y + -x) + x = y + (-x + x) = y + 0 = y as required. This proves existence.

On the other hand, if $z \in V$ is such that z + x = y, then (z + x) + (-x) = y + (-x). Then the left-hand side is z + (x + (-x)) = z + 0 = z and every solution must be y - x. This proves uniqueness.

Corollary

If $x \in V$, then the additive inverse, -x from VS4, is unique. That is if z + x = 0, then z = -x.

Proof.

This is immediate from the theorem—just let y = 0.

More

Theorem (Theorem 2.1 in the Text)

Let V be a vector space over F.

- For all $x \in V$, $0 \cdot x = 0_V$. (Here, I have written 0_V to make it clear that 0_V is the zero vector in V and not the scalar $0 \in \mathbf{F}$.)
- 2 $a \cdot 0_V = 0_V$ for all $a \in \mathbf{F}$.
- **3** $(-a) \cdot x = -(a \cdot x) = a \cdot (-x)$ for all $a \in \mathbf{F}$ and $x \in V$. (What does each minus sign mean?)

Proof.

- (1) We have $0 \cdot x = (0+0) \cdot x = 0 \cdot x + 0 \cdot x$. But we also have $0 \cdot x = 0_V + 0 \cdot x$. Hence $0 \cdot x = 0_V$ by the previous theorem. (Or you could just add $-0 \cdot x$ to both sides.
- (2) The proof is similar to (1): $a \cdot 0_V = a \cdot (0_V + 0_V) = a \cdot 0_V + a \cdot 0_V$.
- (3) Note that $(-a) \cdot x + a \cdot x = (-a + a) \cdot x = 0 \cdot x = 0_V$. Since the additive inverse is unique, we must have $(-a) \cdot x = -(a \cdot x)$ by part 1. Similarly, $a \cdot (-x) + a \cdot x = a \cdot (-x + x) = a \cdot 0_V = 0_V$ by part 2. Hence $a \cdot (-x) = -(a \cdot x)$.

A Corollary

Corollary

If V is a vector space over \mathbf{F} , then for all $x \in V$, we have $-x = (-1) \cdot x$.

Break Time

• Time for a break and questions.

Subspaces

Definition

Let W be a subset of a vector space V over \mathbf{F} . We call W as subspace of V if W is a vector space over \mathbf{F} with the operations of addition and scalar multiplication inherited from V.

Example

If V is a vector space over \mathbf{F} , then the zero subspace $\{0_V\}$ and V itself are always subspaces.

Theorem

Let V be a vector space over \mathbf{F} . A subset W of V is a subspace of V if and only if

- $\mathbf{0}$ $\mathbf{0}_V \in W$,
- $x, y \in W \text{ implies } x + y \in W, \text{ and } x \in W$
- **3** $x \in W$ implies $c \cdot x \in W$ for all $c \in \mathbf{F}$.

Proof

Proof.

Suppose that W is a subspace of V. Then items 2 and 3 are immediate. If 0_W is the zero vector of W, then $0_W + 0_W = 0_W$. But we also have $0_V + 0_W = 0_W$. Since both equations hold in V, we must have $0_V = 0_W$ by our uniqueness result. Hence $0_V \in W$. Now suppose that items 1, 2, and 3 hold. Then VS1, VS2, VS5, VS6, VS7, and VS8 all hold because they hold in V. Since $0_V \in W$, we can let $0_W = 0_V$ and then VS3 holds. So we just have to check each $x \in W$ has an additive inverse in W. But $-x = (-1) \cdot x \in W$, so VS5 holds as well.

A Great Boon to Math 24-Kind

Example

Let $W=\mathcal{C}(\mathbf{R})$ the collection of continuous functions from \mathbf{R} to \mathbf{R} . Then $W\subset \mathscr{F}(\mathbf{R},\mathbf{R})$. We already know, painfully, that $\mathscr{F}(\mathbf{R},\mathbf{R})$ is a vector space over \mathbf{R} . Since the zero function is continuous, and since the sum of continuous functions is continuous, and since a multiple of a continuous function is continuous, all three conditions of our subspace theorem are met and $C(\mathbf{R})$ is a subspace of $\mathscr{F}(\mathbf{R},\mathbf{R})$. Just as importantly, this means $C(\mathbf{R})$ is a real-vector space in its own right.

Another Important Example

Example

Let $n \in \mathbb{N}$ and let $P_n(\mathbf{F})$ be the set of polynomials with coefficients in \mathbf{F} that have degree at most n. Clearly, $P_n(\mathbf{F}) \subset P(\mathbf{F})$. Since the zero polynomial has degree -1, it belongs to $P_n(\mathbf{F})$. Furthermore, the sum of two polynomials of degree at most n is a polynomial of degree at most n. Similarly, a multiple of a polynomial of degree at most n has degree at most n. Hence $P_n(\mathbf{F})$ is a subspace of $P(\mathbf{F})$ and hence its a vector space over \mathbf{F} .

Question

What if we looked as the subset W of polynomials of degree equal to n (and we're careful and include the zero polynomial as well)? Is W a subspace?

Enough

1 That is enough for today.