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Let’s Get Started

1 We should be recording.

2 Those of you watching the videos should give me some
feedback via email as to whether you prefer the zoom link to
the panopto link.

3 The first homework assignment was due today via gradescope.
Since this was the first assignment, you can turn it in until
10pm this evening.

4 But first, are there any questions from last time?
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Some Review

Definition

Let W be a subset of a vector space V over F. We call W as
subspace of V if W is a vector space over F with the operations of
addition and scalar multiplication inherited from V .

Example (Low Hanging Friut)

If V is a vector space over F, then the zero subspace {0V } and V
itself are always subspaces.

Theorem

Let V be a vector space over F. A subset W of V is a subspace of
V if and only if

1 0V ∈W,

2 x , y ∈W implies x + y ∈W, and

3 x ∈W implies c · x ∈W for all c ∈ F.
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Proof

Proof.

Suppose that W is a subspace of V . Then items 2 and 3 are
immediate. If 0W is the zero vector of W , then 0W + 0W = 0W .
But we also have 0V + 0W = 0W . Since both equations hold in V ,
we must have 0V = 0W by our uniqueness result. Hence 0V ∈W .
Now suppose that items 1, 2, and 3 hold. Then VS1, VS2, VS5,
VS6, VS7, and VS8 all hold because they hold in V . Go Since
0V ∈W , we can let 0W = 0V and then VS3 holds. So we just
have to check each x ∈W has an additive inverse in W . But
−x = (−1) · x ∈W , so VS5 holds as well.
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A Great Boon to Math 24-Kind

Example (Last Time)

Let W = C (R) the collection of continuous functions from R to R.
Then W ⊂ F (R,R). We already know, painfully, that F (R,R) is
a vector space over R. Since the zero function is continuous, and
since the sum of continuous functions is continous, and since a
multiple of a continuous function is continuous, all three conditions
of our subspace theorem are met and C (R) is a subspace of
F (R,R). Just as importantly, this means C (R) is a real-vector
space in its own right.
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Polynomials

Remark

To make our life easier—because Math 24 is complicated
enough—unless specifically told otherwise we will assume that our
field F is such that polynomials p(x) = a0 + a1x + · · · anxn ∈ P(F)
can be identified with the corresponding function from F→ F.
This is true for all subfields of R or for C. Therefore
P(F) ⊂ F (F,F). It is not hard to see that P(F) is a subspace!
Clearly the zero polynomial is the just the zero function. Similarly,
addition of polynomials corresponds to addition of functions and
scalar multiplication corresponds to scalar multiplication of
functions.
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Another Important Example

Example

Let n ∈ N and let Pn(F) be the set of polynomials with coefficients
in F that have degree at most n. Clearly, Pn(F) ⊂ P(F). Since the
zero polynomial has degree −1, it belongs to Pn(F). Furthermore,
the sum of two polynomials of degree at most n is a polynomial of
degree at most n. Similarly, a multiple of a polynomial of degree at
most n has degree at most n. Hence Pn(F) is a subspace of P(F)
and hence its a vector space over F.

Question

What if we looked as the subset W of polynomials of degree equal
to n (and we’re careful and include the zero polynomial as well)? Is
W a subspace?
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The Transpose

Definition

If A = (Aij) is a m × n matrix, then the transpose of A is the
n ×m matrix At = (Bij) where Bij = Aji .

Example

Let A =

 1 2
3 4
5 6

. Then At =

(
1 3 5
2 4 6

)
.

Example(
a b
c d

)t

=

(
a c
b d

)
. Also

(
1 2
2 3

)t

=

(
1 2
2 3

)
.
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Symmetric Matrices

Definition

A n × n matrix A is called symmetric if A = At . (This only makes
sense for square matrices!)

Lemma

If A and B are m × n matrices and a, b ∈ F, then
(aA + bB)t = aAt + bBt .

Proof.

This is a homework exercise.
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Subspace

Proposition

The set W of symmetric matrices in Mn×n(F) is a subspace.

Proof.

We just appeal to our theorem on subspaces. First, the zero matrix
O is symmetric, so O ∈W . If A,B ∈W , then
(A+B)t = At +Bt = A+B, so A+B ∈W . If A ∈W and a ∈ F,
then (aA)t = aAt = aA, so aA ∈W . Thus W is a subspace.
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More Types of Matrices

Definition

Let A = (Aij) be a n× n matrix. We say that A is upper triangular
if Aij = 0 whenever i > j . We say that A is lower triangular if
Aij = 0 whenever i > j . We say that A is diagonal if Aij = 0 if
i 6= j .

Example

A =

 1 2 3
0 4 5
0 0 6

, B =

 1 0 0
2 0 0
0 0 6

, and C =

 1 0 0
0 5 0
0 0 0

.

Then A is upper triangular, B is lower triangular, while C is
diagonal as well as both upper and lower triangular.
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Subspaces

Proposition

The set W of upper triangular matrices in Mn×n(F) is a subspace
as is the set W ′ of lower triangular matrices in Mn×n(F).

Proof.

Note that the zero matrix O is upper triangular. Hence O ∈W . If
A,B ∈W and i > j , then (A + B)ij = Aij + Bij = 0 + 0 = 0, so
A + B ∈W . Similarly, aA ∈W if A ∈W . Thus W is a subspace.
The proof for W ′ is similar.
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Break Time

Let’s take a short break to rest, catch up, and ask questions.
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Examples

Example

Let W = { (a1, a2, a3) ∈ R3 : 2a1 = a3 }. Is W as subspace of R3?

Solution

Yes! Clearly the zero vector, (0, 0, 0) ∈W. If
(a1, a2, a3), (a′1, a

′
2, a

′
3) ∈W, then

(a1, a2, a3) + (a′1, a
′
2, a

′
3) = (a1 + a′1, a2 + a′2, a3 + a′3). Then

2(a1 + a′1) = 2a1 + 2a′1 = a3 + a′3. Therefore
(a1, a2, a3) + (a′1, a

′
2, a

′
3) ∈W. Similarly, for any a ∈ R, a(a1, a2, a3) ∈W

if (a1, a2, a3) ∈W.

Example

Let W ′ = { (a1, a2, a3) ∈ R3 : 2a1 = a3 + 1 }. Is W ′ as subspace of R3?

Solution

No! (0, 0, 0) /∈W ′.
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Intersections

Theorem

The intersection of subspaces of a vector space V is a subspace
of V .

Remark

There is no limit to the number of subspaces considered here.
Sometimes we even emphasize this by saying that the “arbitrary
intersection of subspaces is a subspace”.

Proof.

Let C be a collection of subspaces of V . Let W be the
intersection—W =

⋂
W ′∈C W ′. Since 0V ∈W ′ for any W ′ ∈ C ,

we have 0V ∈W . Now let x , y ∈W and a ∈ F. Then for all
W ′ ∈ C , we have x , y ∈W ′. Hence x + y ∈W ′ and ax ∈W ′.
Hence x + y and ax ∈W . This shows W is a subspace.
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Example

Example

Let W1 be the subspace of Mn×n(F) consisting of upper triangular
matrices and W2 the subspace of lower triangular matrices. Since
W1 ∩W2 is the set of diagonal matrices, we see immediately, that
the set of diagonal matrices is a subspace as well. Of course, this
is easy to prove directly.
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Unions

Example

Let W1 = { (x , y) ∈ R2 : y = 0 } and let
W2 = { (x , y) ∈ R2 : x = 0 }. You can easily check that W1 and
W2 are subspaces. What subspace is W1 ∩W2? Is the union
W1 ∪W2 a subspace?

Solution

Clearly, W1 ∩W2 = { 0R2 } is the zero subspace. But W1 ∪W2 is
just the union of the coordinate axes. Note that (1, 0) ∈W1 and
(0, 1) ∈W2, but (1, 1) = (1, 0) + (0, 1) /∈W1 ∪W2. So the union
of two subspaces need not be a subspace.
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Unions Again

Remark

Since the union of two subspaces W1 and W2 need not be a subspace,
might want to find the “smallest” subspace W that contains both W1 and
W2. But is there a smallest such subspace?

Definition

If S1 and S2 are subsets of a vector space V , then we define

S1 + S2 = { x + y : x ∈ S1 and y ∈ S2 }.

Proposition

Suppose that W1 and W2 are subspaces of a vector space V . Then
W1 + W2 is a subspace of V containing W1 ∪W2 and is contained in
every subspace of V that contains W1 ∪W2. That is, W1 + W2 is the
smallest subspace containing both W1 and W2.

Proof.

You will prove this for homework.
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Direct Sums

Definition

Let W1 and W2 be subspaces of a vector space V . We say V is
the direct sum of W1 and W2 if W1 ∩W2 = {0} and
W1 + W2 = V . In this case we write V = W1 ⊕W2.

Example

Let V = R2, W1 = { (x , 0) : x ∈ R }, and W2 = { (0, y) : y ∈ R }.
Then R2 = W1 ⊕W2.

Remark

In our next example, we need to know that if a ∈ F and a = −a,
then a = 0. Note that a = −a implies (1 + 1) · a = 0. So we’re
good if 1 + 1 6= 0. The fancy way to ensure this—other than just
insisting that we work with subfields of R or C—is to say that “F
does not have characteristic 2”. Then 1 + 1 = 2 6= 0 and 1

2 makes
sense.
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Functions

Example

Let V = F (F,F) and assume F does not have characteristic 2.
We say that f ∈ V is even if f (−a) = f (a) for all a ∈ F and we
say that f is odd if f (−a) = −f (a) for all a ∈ F. For example,
f (a) = a2 is even while f (a) = a3 is odd. I will leave it to you to
check that the set We of even functions and the set Wo of odd
functions are both subspaces. Suppose that f ∈We ∩Wo . Then
for all a ∈ F, f (−a) = f (a) = −f (a). Since F is nice, this forces f
to be the zero function so We ∩Wo = {0}. On the other hand,
given f ∈ V , we have f = fe + fo with fe(a) = 1

2(f (a) + f (−a))
and fo(a) = 1

2(f (a)− f (−a)). But fe ∈We and fo ∈Wo .
Therefore V = We ⊕Wo .

Dana P. Williams Math 24: Winter 2021 Lecture 3



Enough

1 That is enough for today.
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Recall

Definition

A vector space over a field F is a set V together with operations
(x , y) 7→ x + y from V × V to V (called addition) and
(a, v) 7→ a · v from F× V → V (called scalar multiplication) such
that the following axioms hold for all x , y , z ∈ V and a, b ∈ F.

VS1: x + y = y + x .

VS2: (x + y) + z = x + (y + z).

VS3: There is an element 0 ∈ V such that x + 0 = x for all x .

VS4: For each x ∈ V there is a −x ∈ V such that −x + x = 0.

VS5: For all x ∈ V , 1 · x = x .

VS6: (ab) · x = a · (b · x).

VS7: a · (x + y) = a · x + a · y .

VS8: (a + b) · x = a · x + b · x .

return1
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