Math 24: Winter 2021 Lecture 3

Dana P. Williams

Dartmouth College

Wednesday January 15, 2021

- **1** We should be recording.
- Those of you watching the videos should give me some feedback via email as to whether you prefer the zoom link to the panopto link.
- The first homework assignment was due today via gradescope. Since this was the first assignment, you can turn it in until 10pm this evening.
- But first, are there any questions from last time?

Definition

Let W be a subset of a vector space V over \mathbf{F} . We call W as subspace of V if W is a vector space over \mathbf{F} with the operations of addition and scalar multiplication inherited from V.

Example (Low Hanging Friut)

If V is a vector space over **F**, then the zero subspace $\{0_V\}$ and V itself are always subspaces.

Theorem

Let V be a vector space over \mathbf{F} . A subset W of V is a subspace of V if and only if

- $0_V \in W,$
- 2 $x, y \in W$ implies $x + y \in W$, and
- **(**) $x \in W$ implies $c \cdot x \in W$ for all $c \in \mathbf{F}$.

Proof.

Suppose that W is a subspace of V. Then items 2 and 3 are immediate. If 0_W is the zero vector of W, then $0_W + 0_W = 0_W$. But we also have $0_V + 0_W = 0_W$. Since both equations hold in V, we must have $0_V = 0_W$ by our uniqueness result. Hence $0_V \in W$. Now suppose that items 1, 2, and 3 hold. Then VS1, VS2, VS5, VS6, VS7, and VS8 all hold because they hold in V. For Since $0_V \in W$, we can let $0_W = 0_V$ and then VS3 holds. So we just have to check each $x \in W$ has an additive inverse in W. But $-x = (-1) \cdot x \in W$, so VS5 holds as well.

Example (Last Time)

Let $W = C(\mathbf{R})$ the collection of continuous functions from \mathbf{R} to \mathbf{R} . Then $W \subset \mathscr{F}(\mathbf{R}, \mathbf{R})$. We already know, painfully, that $\mathscr{F}(\mathbf{R}, \mathbf{R})$ is a vector space over \mathbf{R} . Since the zero function is continuous, and since the sum of continuous functions is continuous, and since a multiple of a continuous function is continuous, all three conditions of our subspace theorem are met and $C(\mathbf{R})$ is a subspace of $\mathscr{F}(\mathbf{R}, \mathbf{R})$. Just as importantly, this means $C(\mathbf{R})$ is a real-vector space in its own right.

Remark

To make our life easier—because Math 24 is complicated enough—unless specifically told otherwise we will assume that our field **F** is such that polynomials $p(x) = a_0 + a_1x + \cdots + a_nx^n \in P(\mathbf{F})$ can be identified with the corresponding function from $\mathbf{F} \to \mathbf{F}$. This is true for all subfields of **R** or for **C**. Therefore $P(\mathbf{F}) \subset \mathscr{F}(\mathbf{F}, \mathbf{F})$. It is not hard to see that $P(\mathbf{F})$ is a subspace! Clearly the zero polynomial is the just the zero function. Similarly, addition of polynomials corresponds to addition of functions and scalar multiplication corresponds to scalar multiplication of functions.

Example

Let $n \in \mathbf{N}$ and let $\mathsf{P}_n(\mathsf{F})$ be the set of polynomials with coefficients in F that have degree at most n. Clearly, $\mathsf{P}_n(\mathsf{F}) \subset \mathsf{P}(\mathsf{F})$. Since the zero polynomial has degree -1, it belongs to $\mathsf{P}_n(\mathsf{F})$. Furthermore, the sum of two polynomials of degree at most n is a polynomial of degree at most n. Similarly, a multiple of a polynomial of degree at most n has degree at most n. Hence $\mathsf{P}_n(\mathsf{F})$ is a subspace of $\mathsf{P}(\mathsf{F})$ and hence its a vector space over F .

Question

What if we looked as the subset W of polynomials of degree equal to n (and we're careful and include the zero polynomial as well)? Is W a subspace?

Definition

If $A = (A_{ij})$ is a $m \times n$ matrix, then the transpose of A is the $n \times m$ matrix $A^t = (B_{ij})$ where $B_{ij} = A_{ji}$.

Example

Let
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$$
. Then $A^t = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}$.

Example

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)^t = \left(\begin{array}{cc} a & c \\ b & d \end{array}\right). \text{ Also } \left(\begin{array}{cc} 1 & 2 \\ 2 & 3 \end{array}\right)^t = \left(\begin{array}{cc} 1 & 2 \\ 2 & 3 \end{array}\right).$$

Definition

A $n \times n$ matrix A is called symmetric if $A = A^t$. (This only makes sense for square matrices!)

Lemma

If A and B are $m \times n$ matrices and $a, b \in \mathbf{F}$, then $(aA + bB)^t = aA^t + bB^t$.

Proof.

This is a homework exercise.

Proposition

The set W of symmetric matrices in $M_{n \times n}(\mathbf{F})$ is a subspace.

Proof.

We just appeal to our theorem on subspaces. First, the zero matrix O is symmetric, so $O \in W$. If $A, B \in W$, then $(A+B)^t = A^t + B^t = A + B$, so $A+B \in W$. If $A \in W$ and $a \in \mathbf{F}$, then $(aA)^t = aA^t = aA$, so $aA \in W$. Thus W is a subspace.

Definition

Let $A = (A_{ij})$ be a $n \times n$ matrix. We say that A is upper triangular if $A_{ij} = 0$ whenever i > j. We say that A is lower triangular if $A_{ij} = 0$ whenever i > j. We say that A is diagonal if $A_{ij} = 0$ if $i \neq j$.

Example

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 6 \end{pmatrix}, \text{ and } C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Then A is upper triangular, B is lower triangular, while C is diagonal as well as both upper and lower triangular.

Proposition

The set W of upper triangular matrices in $M_{n \times n}(\mathbf{F})$ is a subspace as is the set W' of lower triangular matrices in $M_{n \times n}(\mathbf{F})$.

Proof.

Note that the zero matrix O is upper triangular. Hence $O \in W$. If $A, B \in W$ and i > j, then $(A + B)_{ij} = A_{ij} + B_{ij} = 0 + 0 = 0$, so $A + B \in W$. Similarly, $aA \in W$ if $A \in W$. Thus W is a subspace. The proof for W' is similar.

Let's take a short break to rest, catch up, and ask questions.

Examples

Example

Let
$$W = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : 2a_1 = a_3\}$$
. Is W as subspace of \mathbb{R}^3 ?

Solution

Yes! Clearly the zero vector,
$$(0,0,0) \in W$$
. If
 $(a_1, a_2, a_3), (a'_1, a'_2, a'_3) \in W$, then
 $(a_1, a_2, a_3) + (a'_1, a'_2, a'_3) = (a_1 + a'_1, a_2 + a'_2, a_3 + a'_3)$. Then
 $2(a_1 + a'_1) = 2a_1 + 2a'_1 = a_3 + a'_3$. Therefore
 $(a_1, a_2, a_3) + (a'_1, a'_2, a'_3) \in W$. Similarly, for any $a \in \mathbf{R}$, $a(a_1, a_2, a_3) \in W$
if $(a_1, a_2, a_3) \in W$.

Example

Let
$$W' = \{ (a_1, a_2, a_3) \in \mathbb{R}^3 : 2a_1 = a_3 + 1 \}$$
. Is W' as subspace of \mathbb{R}^3 ?

Solution

No! $(0, 0, 0) \notin W'$.

Theorem

The intersection of subspaces of a vector space V is a subspace of V.

Remark

There is no limit to the number of subspaces considered here. Sometimes we even emphasize this by saying that the "arbitrary intersection of subspaces is a subspace".

Proof.

Let \mathscr{C} be a collection of subspaces of V. Let W be the intersection— $W = \bigcap_{W' \in \mathscr{C}} W'$. Since $0_V \in W'$ for any $W' \in \mathscr{C}$, we have $0_V \in W$. Now let $x, y \in W$ and $a \in \mathbf{F}$. Then for all $W' \in \mathscr{C}$, we have $x, y \in W'$. Hence $x + y \in W'$ and $ax \in W'$. Hence x + y and $ax \in W$. This shows W is a subspace.

Example

Let W_1 be the subspace of $M_{n \times n}(\mathbf{F})$ consisting of upper triangular matrices and W_2 the subspace of lower triangular matrices. Since $W_1 \cap W_2$ is the set of diagonal matrices, we see immediately, that the set of diagonal matrices is a subspace as well. Of course, this is easy to prove directly.

Example

Let $W_1 = \{ (x, y) \in \mathbb{R}^2 : y = 0 \}$ and let $W_2 = \{ (x, y) \in \mathbb{R}^2 : x = 0 \}$. You can easily check that W_1 and W_2 are subspaces. What subspace is $W_1 \cap W_2$? Is the union $W_1 \cup W_2$ a subspace?

Solution

Clearly, $W_1 \cap W_2 = \{ 0_{\mathbb{R}^2} \}$ is the zero subspace. But $W_1 \cup W_2$ is just the union of the coordinate axes. Note that $(1,0) \in W_1$ and $(0,1) \in W_2$, but $(1,1) = (1,0) + (0,1) \notin W_1 \cup W_2$. So the union of two subspaces need not be a subspace.

Unions Again

Remark

Since the union of two subspaces W_1 and W_2 need not be a subspace, might want to find the "smallest" subspace W that contains both W_1 and W_2 . But is there a smallest such subspace?

Definition

If S_1 and S_2 are subsets of a vector space V, then we define

$$S_1 + S_2 = \{ x + y : x \in S_1 \text{ and } y \in S_2 \}$$

Proposition

Suppose that W_1 and W_2 are subspaces of a vector space V. Then $W_1 + W_2$ is a subspace of V containing $W_1 \cup W_2$ and is contained in every subspace of V that contains $W_1 \cup W_2$. That is, $W_1 + W_2$ is the smallest subspace containing both W_1 and W_2 .

Proof.

You will prove this for homework.

Direct Sums

Definition

Let W_1 and W_2 be subspaces of a vector space V. We say V is the direct sum of W_1 and W_2 if $W_1 \cap W_2 = \{0\}$ and $W_1 + W_2 = V$. In this case we write $V = W_1 \oplus W_2$.

Example

Let
$$V = \mathbb{R}^2$$
, $W_1 = \{ (x, 0) : x \in \mathbb{R} \}$, and $W_2 = \{ (0, y) : y \in \mathbb{R} \}$.
Then $\mathbb{R}^2 = W_1 \oplus W_2$.

Remark

In our next example, we need to know that if $a \in \mathbf{F}$ and a = -a, then a = 0. Note that a = -a implies $(1 + 1) \cdot a = 0$. So we're good if $1 + 1 \neq 0$. The fancy way to ensure this—other than just insisting that we work with subfields of **R** or **C**—is to say that "**F** does not have characteristic 2". Then $1 + 1 = 2 \neq 0$ and $\frac{1}{2}$ makes sense.

Example

Let $V = \mathscr{F}(\mathbf{F}, \mathbf{F})$ and assume **F** does not have characteristic 2. We say that $f \in V$ is even if f(-a) = f(a) for all $a \in \mathbf{F}$ and we say that f is odd if f(-a) = -f(a) for all $a \in \mathbf{F}$. For example, $f(a) = a^2$ is even while $f(a) = a^3$ is odd. I will leave it to you to check that the set W_e of even functions and the set W_o of odd functions are both subspaces. Suppose that $f \in W_e \cap W_o$. Then for all $a \in \mathbf{F}$, f(-a) = f(a) = -f(a). Since **F** is nice, this forces f to be the zero function so $W_e \cap W_o = \{0\}$. On the other hand, given $f \in V$, we have $f = f_e + f_o$ with $f_e(a) = \frac{1}{2}(f(a) + f(-a))$ and $f_o(a) = \frac{1}{2}(f(a) - f(-a))$. But $f_e \in W_e$ and $f_o \in W_o$. Therefore $V = W_e \oplus W_o$.

1 That is enough for today.

Recall

Definition

A vector space over a field **F** is a set V together with operations $(x, y) \mapsto x + y$ from $V \times V$ to V (called addition) and $(a, v) \mapsto a \cdot v$ from $\mathbf{F} \times V \rightarrow V$ (called scalar multiplication) such that the following axioms hold for all $x, y, z \in V$ and $a, b \in \mathbf{F}$. VS1: x + y = y + x. VS2: (x + y) + z = x + (y + z). VS3: There is an element $0 \in V$ such that x + 0 = x for all x. VS4: For each $x \in V$ there is a $-x \in V$ such that -x + x = 0. VS5: For all $x \in V$. $1 \cdot x = x$. VS6: $(ab) \cdot x = a \cdot (b \cdot x)$. VS7: $a \cdot (x + y) = a \cdot x + a \cdot y$. VS8: $(a+b) \cdot x = a \cdot x + b \cdot x$.

▶ return1