Math 24: Winter 2021
 Lecture 4

Dana P. Williams
Dartmouth College

Friday January 13, 2021

Let's Get Started

(1) We should be recording.
(2) Remember, it is more comfortable for me if you turn on your video so that I feel like I am talking to real people.
(3) There is no class on Monday (January 18th) due to the MLK holiday.
(9) The second homework assignment is due Wednesday via gradescope by 10am.
(3) But first, are there any questions from last time?

Review

Proposition (Homework)

Suppose that W_{1} and W_{2} are subspaces of a vector space V. Then $W_{1}+W_{2}$ is a subspace of V containing $W_{1} \cup W_{2}$ and is contained in every subspace of V that contains $W_{1} \cup W_{2}$. That is, $W_{1}+W_{2}$ is the smallest subspace containing both W_{1} and W_{2}.

Definition

Let W_{1} and W_{2} be subspaces of a vector space V. We say V is the direct sum of W_{1} and W_{2} if $W_{1} \cap W_{2}=\{0\}$ and $W_{1}+W_{2}=V$. In this case we write $V=W_{1} \oplus W_{2}$.

Good Fields

Remark

Most of the time, we sill assume that our field \mathbf{F} is a subfield of the real numbers or the complex numbers. But it is fun to play with a general field when we can. However, it our next example, we need to know that if $a \in \mathbf{F}$ and $a=-a$, then $a=0$. Note that $a=-a$ implies $(1+1) \cdot a=0$. So we're good if $1+1 \neq 0$. The fancy way to ensure this-other than just insisting that we work with subfields of \mathbf{R} or \mathbf{C}-is to say that " \mathbf{F} does not have characteristic 2 ". Then $1+1=2 \neq 0$ and $\frac{1}{2}$ makes sense.

Example

Let $V=\mathscr{F}(\mathbf{F}, \mathbf{F})$ and assume \mathbf{F} does not have characteristic 2 . We say that $f \in V$ is even if $f(-a)=f(a)$ for all $a \in \mathbf{F}$ and we say that f is odd if $f(-a)=-f(a)$ for all $a \in \mathbf{F}$. For example, $f(a)=a^{2}$ is even while $f(a)=a^{3}$ is odd. I will leave it to you to check that the set W_{e} of even functions and the set W_{o} of odd functions are both subspaces. Suppose that $f \in W_{e} \cap W_{o}$. Then for all $a \in \mathbf{F}, f(-a)=f(a)=-f(a)$. Since \mathbf{F} is nice, this forces f to be the zero function so $W_{e} \cap W_{o}=\{0\}$. On the other hand, given $f \in V$, we have $f=f_{e}+f_{o}$ with $f_{e}(a)=\frac{1}{2}(f(a)+f(-a))$ and $f_{o}(a)=\frac{1}{2}(f(a)-f(-a))$. But $f_{e} \in W_{e}$ and $f_{o} \in W_{o}$.
Therefore $V=W_{e} \oplus W_{o}$.

Linear Combinations

Definition

Let S be a subset of a vector space V. Then we say that $v \in V$ is a linear combination of vectors from S is there are finitely many vectors, say v_{1}, \ldots, v_{n}, in S, and scalars $a_{1}, \ldots, a_{n} \in \mathbf{F}$ such that $v=a_{1} v_{1}+\cdots+a_{n} v_{n}$. We also say that v is linear combination of v_{1}, \ldots, v_{n} and call the scalars u_{k} the coefficients of the linear combination.

Example

Since $0 v=0_{V}$ for any $v \in V$, the zero vector 0_{V} is a linear combination of any nonempty set $S \subset V$.

Example

Since $(x, y)=x(1,0)+y(0,1)$, every vector in \mathbf{F}^{2} can be obtained as a linear combination from $S=\{(1,0),(0,1)\}$.

An Example

Example

Suppose that $p_{1}(x)=x^{2}+2 x+1, p_{2}(x)=x^{2}-x+1$, and $p_{3}(x)=2 x^{2}+x+2$ are in $\mathrm{P}(\mathbf{R})$. Can $f(x)=x^{2}+x+1$ be expressed as a linear combination of p_{1}, p_{2}, and p_{3} ?

Solution

Let's try f first. We want to find scalars $a_{1}, a_{2}, a_{3} \in \mathbf{R}$ such that $a_{1} p_{1}(x)+a_{2} p_{2}(x)+a_{3} p_{3}(x)=f(x)$. Collecting terms on the left-hand side, we want
$\left(a_{1}+a_{2}+2 a_{3}\right) x^{2}+\left(2 a_{1}-a_{2}+a_{3}\right) x+\left(a_{1}+a_{2}+2 a_{3}\right)=x^{2}+x+1$.
Since two polynomials are equal exactly when their coefficients are equal, this gives the following system of linear equations:

Example

Solution

Solution (Solution Continued)

$$
\begin{aligned}
& a_{1}+a_{2}+2 a_{3}=1 \\
& 2 a_{1}-a_{2}+a_{3}=1 \\
& a_{1}+a_{2}+2 a_{3}=1
\end{aligned}
$$

Then, as we showed using the document camera, using "standard techniques", the solutions to the above system are the same as the solutions to

$$
\begin{aligned}
a_{1}+\quad a_{3} & =\frac{2}{3} \\
a_{2}+a_{3} & =\frac{1}{3} \\
0 & =0
\end{aligned}
$$

Now we can pick a_{3} as we please and $a_{1}=\frac{2}{3}-a_{3}$ while $a_{2}=\frac{1}{3}-a_{3}$. Hence f is a linear combination and we get specific coefficients by taking $\left(a_{1}, a_{2}, a_{3}\right) \in\left\{\left(\frac{2}{3}-t, \frac{1}{3}-t, t\right): t \in \mathbf{R}\right\}$.

Standard Techniques

If we have a system of linear equations, then we get a system with the same solutions if we
(1) Interchange two equations.
(2) Multiply and equation by a nonzero scalar.
(3) Add a multiple of one equation to a different equation.

Then our goal is the following.
(1) Arrange that the first nonzero coefficient in any equation is 1 . We call this a leading coefficient.
(2) If an unknown corresponds to a leading coefficient in one equation, it has zero coefficient in every other equation.
(3) The subscript of a leading coefficient an equation is always larger than that in any equation above it.

Back to Our Example

Example

Let's return to the previous example, but replace $f(x)=x^{2}+x+1$ with $g(x)=x^{2}+x+2$ and ask if g is a linear combination of p_{1}, p_{2}, and p_{3}.

Solution

Proceeding as before, we get the system

$$
\begin{aligned}
& a_{1}+a_{2}+2 a_{3}=1 \\
& 2 a_{1}-a_{2}+a_{3}=1 \\
& a_{1}+a_{2}+2 a_{3}=2
\end{aligned}
$$

Solution

Then, as we showed using the document camera, using "standard techniques", the solutions to the above system are the same as the solutions to

$$
\begin{aligned}
a_{1}+a_{2}+2 a_{3} & =1 \\
-3 a_{2}-3 a_{3} & =-1 \\
0 & =1 .
\end{aligned}
$$

Since this system clearly has no solutions, neither does the original system. Hence g is not a linear combination of p_{1}, p_{2}, and p_{3}.

Break Time

Time for a quick break to relax and ask questions.

Span

Definition

Let S be a nonempty subset of a vector space V. Then $\operatorname{Span}(S)$ is defined to be the set of all linear combinations of vectors from S and is called the span of S. We also define $\operatorname{Span}(\emptyset)=\left\{0_{V}\right\}$.

Example

Let $S=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right\} \subset M_{2 \times 2}(\mathbf{R})$. Then $a\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)+b\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right)$ and $\operatorname{Span}(S)=\left\{\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right): a, b \in \mathbf{R}\right\}$.

Span Theorem

Theorem

If S is any subset of a vector space V, then $\operatorname{Span}(S)$ is subspace of V containing S. Furthermore, any subspace of V containing S must also contain Span (S). Hence $\operatorname{Span}(S)$ is the smallest subspace of V containing S.

Proof.

If $S=\emptyset$, then $\operatorname{Span}(S):=\{0\}$. Thus $\operatorname{Span}(S)$ is a subspace V and is contained in every subspace of V.
Now suppose $S \neq \emptyset$. Then there is some $x \in S$ and hence $0 \cdot x=0_{v} \in \operatorname{Span}(S)$. Now suppose that $x, y \in \operatorname{Span}(S)$. Then there are vectors u_{1}, \ldots, u_{n} and v_{1}, \ldots, v_{m} in S and scalars a_{k} and b_{k} such that $x=a_{1} u_{1}+\cdots+a_{n} u_{n}$ and $y=b_{1} v_{1}+\cdots+b_{m} v_{m}$. Since $0 \cdot v=0 v$ for any $v \in V$, we can add 0_{V} to both x and y and assume that $n=m$ and that $u_{k}=v_{k}$ for $1 \leq k \leq n$. Then
$x+y=\left(a_{1}+b_{1}\right) u_{1}+\cdots+\left(a_{n}+b_{n}\right) u_{n} \in \operatorname{Span}(S)$. Similarly, $a \cdot x=a a_{1} u_{1}+\cdots+a a_{n} u_{n} \in V$.
This shows that $\operatorname{Span}(S)$ is a subspace.

Proof

Proof Continued.

Now suppose that W is a subspace such that $S \subset W$. If $u_{1}, \ldots, u_{n} \in S$ and a_{k} are scalars, then $a_{1} u_{1}+\cdots+a_{n} u_{n} \in W$ since W is closed under addition and scalar multiplication. Hence $\operatorname{Span}(S) \subset W$.

Definition

A subset $S \subset V$ spans V or generates V if $V=\operatorname{Span}(S)$. In this case, we say that vectors of S span or generate V.

Example

Let W be the set of symmetric 2×2-matrices. Let
$S=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right\}$. Then if $\left(\begin{array}{ll}a & c \\ c & b\end{array}\right) \in W$, then
$\left(\begin{array}{ll}a & c \\ c & b\end{array}\right)=a\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+b\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)+c\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Hence S spans W.

An Example

Example

Suppose that $p_{1}(x)=x^{2}+2 x+1, p_{2}(x)=x^{2}-x+1$, and $p_{3}(x)=2 x^{2}+x+2$ are in $P_{2}(\mathbf{R})$. We showed earlier that $g(x)=x^{2}+x+2$ is not a linear combination of p_{1}, p_{2}, p_{3}. Hence $\left\{p_{1}, p_{2}, p_{3}\right\}$ does not span all of $P_{2}(\mathbf{R})$.

Break Time

Time for a short break and few questions.

An Example

Proposition

Suppose that $S_{1} \subset S_{2}$ in a vector space V. Then $\operatorname{Span}\left(S_{1}\right) \subset \operatorname{Span}\left(S_{2}\right)$.

Proof.

If $S_{1}=\emptyset$, the result is automatic (since $\left\{0_{V}\right\}$ is a subspace of any subspace). Otherwise, if $x \in \operatorname{Span}\left(S_{1}\right)$ then there are vectors $u_{1}, \ldots, u_{n} \in S_{1}$ and scalars a_{k} such that $x=a_{1} u_{1}+\cdots+a_{n} u_{n}$. But u_{1}, \ldots, u_{n} are also in S_{2}. Hence $x \in \operatorname{Span}\left(S_{2}\right)$. This shows $\operatorname{Span}\left(S_{1}\right) \subset \operatorname{Span}\left(S_{2}\right)$ as required.

Another Result

Proposition

Let v_{1}, \ldots, v_{n+1} be vectors in a vector space V. Suppose that $v_{n+1} \in \operatorname{Span}\left(\left\{v_{1}, \ldots, v_{n}\right\}\right)$. Then

$$
\operatorname{Span}\left(\left\{v_{1}, \ldots, v_{n}\right\}\right)=\operatorname{Span}\left(\left\{v_{1}, \ldots, v_{n+1}\right\}\right)
$$

Proof.

By the previous result,
$\operatorname{Span}\left(\left\{v_{1}, \ldots, v_{n}\right\}\right) \subset \operatorname{Span}\left(\left\{v_{1}, \ldots, v_{n+1}\right\}\right)$. Now suppose that $x \in \operatorname{Span}\left(\left\{v_{1}, \ldots, v_{n+1}\right\}\right)$. Then there are scalars a_{k} such that $x=a_{1} v_{1}+\cdots a_{n} v_{n}+a_{n+1} v_{n+1}$. But assumption there are also scalars b_{k} such that $v_{n+1}=b_{1} v_{1}+\cdots+b_{n} v_{n}$. Therefore, $x=\left(a_{1}+a_{n+1} b_{1}\right) v_{1}+\cdots\left(a_{n}+a_{n+1} b_{n}\right) v_{n} \in \operatorname{Span}\left(\left\{v_{1}, \ldots, v_{n}\right\}\right)$.
This shows that $\operatorname{Span}\left(\left\{v_{1}, \ldots, v_{n+1}\right\}\right) \subset \operatorname{Span}\left(\left\{v_{1}, \ldots, v_{n}\right\}\right)$ so the sets must be equal.

Enough

(1) That is enough for today.

