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Let’s Get Started

1 We should be recording.

2 Remember, it is more comfortable for me if you turn on your
video so that I feel like I am talking to real people.

3 There is no class on Monday (January 18th) due to the MLK
holiday.

4 The second homework assignment is due Wednesday via
gradescope by 10am.

5 But first, are there any questions from last time?
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Review

Proposition (Homework)

Suppose that W1 and W2 are subspaces of a vector space V . Then
W1 + W2 is a subspace of V containing W1 ∪W2 and is contained
in every subspace of V that contains W1 ∪W2. That is, W1 + W2

is the smallest subspace containing both W1 and W2.

Definition

Let W1 and W2 be subspaces of a vector space V . We say V is
the direct sum of W1 and W2 if W1 ∩W2 = {0} and
W1 + W2 = V . In this case we write V = W1 ⊕W2.
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Good Fields

Remark

Most of the time, we sill assume that our field F is a subfield of
the real numbers or the complex numbers. But it is fun to play
with a general field when we can. However, it our next example,
we need to know that if a ∈ F and a = −a, then a = 0. Note that
a = −a implies (1 + 1) · a = 0. So we’re good if 1 + 1 6= 0. The
fancy way to ensure this—other than just insisting that we work
with subfields of R or C—is to say that “F does not have
characteristic 2”. Then 1 + 1 = 2 6= 0 and 1

2 makes sense.
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Functions

Example

Let V = F (F,F) and assume F does not have characteristic 2.
We say that f ∈ V is even if f (−a) = f (a) for all a ∈ F and we
say that f is odd if f (−a) = −f (a) for all a ∈ F. For example,
f (a) = a2 is even while f (a) = a3 is odd. I will leave it to you to
check that the set We of even functions and the set Wo of odd
functions are both subspaces. Suppose that f ∈We ∩Wo . Then
for all a ∈ F, f (−a) = f (a) = −f (a). Since F is nice, this forces f
to be the zero function so We ∩Wo = {0}. On the other hand,
given f ∈ V , we have f = fe + fo with fe(a) = 1

2(f (a) + f (−a))
and fo(a) = 1

2(f (a)− f (−a)). But fe ∈We and fo ∈Wo .
Therefore V = We ⊕Wo .
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Linear Combinations

Definition

Let S be a subset of a vector space V . Then we say that v ∈ V is
a linear combination of vectors from S is there are finitely many
vectors, say v1, . . . , vn, in S , and scalars a1, . . . , an ∈ F such that
v = a1v1 + · · ·+ anvn. We also say that v is linear combination of
v1, . . . , vn and call the scalars ak the coefficients of the linear
combination.

Example

Since 0 · v = 0V for any v ∈ V , the zero vector 0V is a linear
combination of any nonempty set S ⊂ V .

Example

Since (x , y) = x(1, 0) + y(0, 1), every vector in F2 can be obtained
as a linear combination from S = { (1, 0), (0, 1) }.
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An Example

Example

Suppose that p1(x) = x2 + 2x + 1, p2(x) = x2 − x + 1, and
p3(x) = 2x2 + x + 2 are in P(R). Can f (x) = x2 + x + 1 be
expressed as a linear combination of p1, p2, and p3? return

Solution

We want to find scalars a1, a2, a3 ∈ R such that
a1p1(x) + a2p2(x) + a3p3(x) = f (x). Collecting terms on the
left-hand side, we want
(a1 + a2 + 2a3)x2 + (2a1− a2 + a3)x + (a1 + a2 + 2a3) = x2 + x + 1.
Since two polynomials are equal exactly when their coefficients are
equal, this gives the following system of linear equations:
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Solution

Solution (Solution Continued)

a1 + a2 + 2a3 = 1

2a1 − a2 + a3 = 1

a1 + a2 + 2a3 = 1.

Then, as we showed using the document camera, using “standard
techniques”, the solutions to the above system are the same as the
solutions to

a1 + a3 = 2
3

a2 + a3 = 1
3

0 = 0.

Now we can pick a3 as we please and a1 = 2
3 − a3 while a2 = 1

3 − a3.
Hence f is a linear combination and we get specific coefficients by taking
(a1, a2, a3) ∈ { ( 2

3 − t, 1
3 − t, t) : t ∈ R }.
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Standard Techniques

If we have a system of linear equations, then we get a system with
the same solutions if we

1 Interchange two equations.

2 Multiply and equation by a nonzero scalar.

3 Add a multiple of one equation to a different equation.

Then our goal is the following.

1 Arrange that the first nonzero coefficient in any equation is 1.
We call this a leading coefficient.

2 If an unknown corresponds to a leading coefficient in one
equation, it has zero coefficient in every other equation.

3 The subscript of a leading coefficient an equation is always
larger than that in any equation above it.
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Back to Our Example

Example

Let’s return to the previous example , but replace f (x) = x2 + x + 1
with g(x) = x2 + x + 2 and ask if g is a linear combination of p1,
p2, and p3.

Solution

Proceeding as before, we get the system

a1 + a2 + 2a3 = 1

2a1 − a2 + a3 = 1

a1 + a2 + 2a3 = 2.
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Solution

Solution

Then, as we showed using the document camera, using “standard
techniques”, the solutions to the above system are the same as the
solutions to

a1 + a2 + 2a3 = 1

−3a2 − 3a3 = −1

0 = 1.

Since this system clearly has no solutions, neither does the original
system. Hence g is not a linear combination of p1, p2, and p3.
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Break Time

Time for a quick break to relax and ask questions.
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Span

Definition

Let S be a nonempty subset of a vector space V . Then Span(S) is
defined to be the set of all linear combinations of vectors from S
and is called the span of S . We also define Span(∅) = {0V }.

Example

Let S = {
(
1 0
0 1

)
,
(
0 1
0 0

)
} ⊂ M2×2(R). Then

a
(
1 0
0 1

)
+ b

(
0 1
0 0

)
=

(
a b
0 a

)
and Span(S) = {

(
a b
0 a

)
: a, b ∈ R }.
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Span Theorem

Theorem

If S is any subset of a vector space V , then Span(S) is subspace of V
containing S . Furthermore, any subspace of V containing S must also
contain Span(S). Hence Span(S) is the smallest subspace of V containing
S .

Proof.

If S = ∅, then Span(S) := {0}. Thus Span(S) is a subspace V and is
contained in every subspace of V .
Now suppose S 6= ∅. Then there is some x ∈ S and hence
0 · x = 0V ∈ Span(S). Now suppose that x , y ∈ Span(S). Then there are
vectors u1, . . . , un and v1, . . . , vm in S and scalars ak and bk such that
x = a1u1 + · · ·+ anun and y = b1v1 + · · ·+ bmvm. Since 0 · v = 0V for
any v ∈ V , we can add 0V to both x and y and assume that n = m and
that uk = vk for 1 ≤ k ≤ n. Then
x + y = (a1 + b1)u1 + · · ·+ (an + bn)un ∈ Span(S). Similarly,
a · x = aa1u1 + · · ·+ aanun ∈ Span(S).
This shows that Span(S) is a subspace. Further, if v ∈ S , then
v = 1 · v ∈ Span(S) so S ⊂ Span(S) as claimed.
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Proof

Proof Continued.

Now suppose that W is a subspace such that S ⊂W . If
u1, . . . , un ∈ S and ak are scalars, then a1u1 + · · ·+ anun ∈W
since W is closed under addition and scalar multiplication. Hence
Span(S) ⊂W .

Definition

A subset S ⊂ V spans V or generates V if V = Span(S). In this
case, we say that vectors of S span or generate V .

Example

Let W be the set of symmetric 2× 2-matrices. Let
S = {

(
1 0
0 0

)
,
(
0 0
0 1

)
,
(
0 1
1 0

)
}. Then if

(
a c
c b

)
∈W , then(

a c
c b

)
= a

(
1 0
0 0

)
+ b

(
0 0
0 1

)
+ c

(
0 1
1 0

)
. Hence S spans W .
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An Example

Example

Suppose that p1(x) = x2 + 2x + 1, p2(x) = x2 − x + 1, and
p3(x) = 2x2 + x + 2 are in P2(R). We showed earlier that
g(x) = x2 + x + 2 is not a linear combination of p1, p2, p3. Hence
{ p1, p2, p3 } does not span all of P2(R).
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Break Time

Time for a short break and few questions.
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An Example

Proposition

Suppose that S1 ⊂ S2 in a vector space V . Then
Span(S1) ⊂ Span(S2).

Proof.

If S1 = ∅, the result is automatic (since {0V } is a subspace of any
subspace). Otherwise, if x ∈ Span(S1) then there are vectors
u1, . . . , un ∈ S1 and scalars ak such that x = a1u1 + · · ·+ anun.
But u1, . . . , un are also in S2. Hence x ∈ Span(S2). This shows
Span(S1) ⊂ Span(S2) as required.

Dana P. Williams Math 24: Winter 2021 Lecture 4



Another Result

Proposition

Let v1, . . . , vn+1 be vectors in a vector space V . Suppose that
vn+1 ∈ Span({ v1, . . . , vn }). Then

Span({ v1, . . . , vn }) = Span({ v1, . . . , vn+1 }).

Proof.

By the previous result,
Span({ v1, . . . , vn }) ⊂ Span({ v1, . . . , vn+1 }). Now suppose that
x ∈ Span({ v1, . . . , vn+1 }). Then there are scalars ak such that
x = a1v1 + · · · anvn + an+1vn+1. But assumption there are also
scalars bk such that vn+1 = b1v1 + · · ·+ bnvn. Therefore,
x = (a1 + an+1b1)v1 + · · · (an + an+1bn)vn ∈ Span({ v1, . . . , vn }).
This shows that Span({ v1, . . . , vn+1 }) ⊂ Span({ v1, . . . , vn }) so
the sets must be equal.
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Enough

1 That is enough for today.
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