Math 24: Winter 2021 Lecture 5

Dana P. Williams
Dartmouth College

Wednesday, January 20, 2021

Let's Get Started

(1) We should be recording.
(2) Remember, it is more comfortable for me if you turn on your video so that I feel like I am talking to real people.
(3) I put a link to some brief homework solutions on the assignments page. I'll update the link as the term progresses.
(9) You should have turned in your second homework by now.
(5) Because of the Monday holiday, we will be meeting in our x-hour tomorrow from 12:30 to 1:20.
(1) But first, are there any questions from last time?

Review

Theorem

If S is any subset of a vector space V, then $\operatorname{Span}(S)$ is subspace of V containing S. Furthermore, any subspace of V containing S must also contain $\operatorname{Span}(S)$. Hence $\operatorname{Span}(S)$ is the smallest subspace of V containing S.

Definition

A subset $S \subset V$ spans V or generates V if $V=\operatorname{Span}(S)$. In this case, we say that vectors of S span or generate V.

Proposition

Let v_{1}, \ldots, v_{n+1} be vectors in a vector space V. Suppose that $v_{n+1} \in \operatorname{Span}\left(\left\{v_{1}, \ldots, v_{n}\right\}\right)$. Then

$$
\operatorname{Span}\left(\left\{v_{1}, \ldots, v_{n}\right\}\right)=\operatorname{Span}\left(\left\{v_{1}, \ldots, v_{n+1}\right\}\right)
$$

Efficiency

Definition

A subset S of a vector space V is called linearly dependent if there are finitely many distinct vectors u_{1}, \ldots, u_{n} in S and scalars a_{1}, \ldots, a_{n} not all equal to 0 such that

$$
a_{1} u_{1}+\cdots+a_{n} u_{n}=0 v .
$$

Remark

The words "distinct" and "not all equal to 0 " are critical. If $a_{k}=0$ for all k, then (\ddagger) is always satisfied no matter what the u_{k} are. We call this a trivial representation of 0_{V}. If $u_{1}=u_{2}$, then $-(1) u_{1}+(1) u_{2}=0_{V}$ would be a nontrivial representation of 0_{V} which would tell us nothing about the set S.

Example

Example

Let $A_{1}=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right), A_{2}=\left(\begin{array}{cc}0 & -1 \\ 3 & 0\end{array}\right), A_{3}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, and $A_{4}=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ and consider $S=\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\} \subset M_{2 \times 2}(\mathbf{R})$. To see if S is linearly dependent, we have to look for a nontrivial solution to $a_{1} A_{1}+a_{2} A_{2}+a_{3} A_{3}+a_{4} A_{4}=O$. This results in the system

$$
\begin{aligned}
a_{1}+\quad a_{3}+a_{4} & =0 \\
a_{1}-a_{2}+a_{3} & =0 \\
a_{1}+3 a_{2}+\quad a_{4} & =0 \\
a_{1}+\quad a_{3}+a_{4} & =0
\end{aligned}
$$

You can confirm that $a_{1}=2, a_{2}=-1, a_{3}=-3$, and $a_{4}=1$ is a nontrivial solution. Hence S is linearly dependent. (In fact, all the solutions are $\{(2 t,-t,-3 t, t): t \in \mathbf{R}\}$ and it might be a good idea to check this.)

Redundancy

Remark

Notice that in the process of showing that the set S on the previous slide was linearly dependent, we discovered some relationships between the A_{k}. For example, $A_{2}=2 A_{1}-3 A_{3}+A_{4}$ as well as $A_{1}=\frac{1}{2} A_{2}+\frac{3}{2} A_{3}-\frac{1}{2} A_{4}$, etc. So for example, $\operatorname{Span}\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}=\operatorname{Span}\left\{A_{1}, A_{3}, A_{4}\right\}$ using our result from last time.

Proposition

Let S be a subset of a vector space V. Then S is linearly dependent if and only if (at least) one of the vectors in S can be written as a linear combination of other vectors from S.

Proof.

Suppose $v \in S$ is such that $v=a_{1} u_{1}+\cdots+a_{n} u_{n}$ for distinct vectors u_{1}, \ldots, u_{n} is S not equal to v. Then $0_{v}=a_{1} u_{1}+\cdots+a_{n} u_{n}+(-1) v$ is a nontrivial representation of 0_{V} and S is linearly dependent.

Proof

Proof Continued.

Conversely, suppose that S is linearly dependent. Then there are distinct vectors u_{1}, \ldots, u_{n} is S and scalars a_{1}, \ldots, a_{n} not all equal to 0 so that $a_{1} u_{1}+\cdots+a_{n} u_{n}=0 v$. Renumbering the vectors if necessary, we can assume $a_{n} \neq 0$. Then we have

$$
u_{n}=-\frac{a_{1}}{a_{n}} u_{1}-\cdots-\frac{a_{n-1}}{a_{n}} u_{n-1}
$$

That is, u_{n} is a linear combination of u_{1}, \ldots, u_{n-1} from S.

Linear Independence

Remark

If we want to find a spanning set for V, then a linearly dependent set S is guaranteed to have redundancies-one of the vectors in S can be written as a linear combination of the other vectors in S. So it makes sense to make the following (equally important) definition.

Definition

We call a subset S in a vector space V linearly independent if it is not linearly dependent.

Low Hanging Fruit

Remark

(1) The empty set is linearly independent since a linearly dependent set can't be empty.
(2) A set consisting of a single nonzero vector is linearly independent. If $v \neq 0 v$ and $a v=0 v$ then $a=0$.
(3) Let $S=\{u, v\}$ be distinct vectors in a vector space V. Then S is linearly independent if and only if neither u nor v is a multiple of the other. (This homework problem $\S 1.5, \# 9$.)
(9) A set S is linearly independent if and only if the only representations of 0_{V} as linear combinations of vectors from S are the trivial ones. That is, if we assume u_{1}, \ldots, u_{n} are distinct vectors from S such that there are scalars a_{1}, \ldots, a_{n} such that $a_{1} u_{1}+\cdots+a_{n} u_{n}=0 v$, then $a_{1}=\cdots=a_{n}=0$.

An Example

Example

Let $V=\mathbf{R}^{4}$. Let $u_{1}=(1,1,1,1), u_{2}=(1,1,1,0), u_{3}=(1,1,0,0)$ and $u_{4}=(1,0,0,0)$. Is $S=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ linearly independent?

Solution

We need to show that $a_{1} u_{1}+a_{2} u_{2}+a_{3} u_{3}+a_{4} u_{4}=(0,0,0,0)$ has only the trivial solution. But this gives us the system

$$
\begin{array}{ll}
a_{1}+a_{2}+a_{3}+a_{4} & =0 \\
a_{1}+a_{2}+a_{3} & =0 \\
a_{1}+a_{2} & =0 \\
a_{1} & =0
\end{array}
$$

Since the only solution is $a_{1}=a_{2}=a_{3}=a_{4}=0$, the set is linearly independent.

Break Time

Time for a short break and some questions.

Linear Independence

Theorem

Let V be a vector space. Suppose that S_{1} and S_{2} are subsets such that $S_{1} \subset S_{2}$.
(1) If S_{1} is linearly dependent, then so is S_{2}.
(2) If S_{2} is linearly independent, then so is S_{1}.

Proof.

Item 2 follows from item 1. Why?
So we just need to prove item 1 . Suppose S_{1} is linearly dependent. Then there are distinct vectors u_{1}, \ldots, u_{n} and scalars a_{1}, \ldots, a_{n}, not all equal to 0 , such that

$$
\begin{equation*}
0_{V}=a_{1} u_{1}+\cdots+a_{n} u_{n} \tag{1}
\end{equation*}
$$

is a nontrivial representation of 0_{V} from vectors in S_{1} But the u_{k} are also in S_{2}. Hence (1) is also a nontrivial representation of 0_{V} from vectors in S_{2}. This shows that S_{2} is linearly dependent.

A Theorem

Theorem

Suppose that S is a linearly independent set in a vector space V. If $v \in V$, then $S^{\prime}=\{v\} \cup S$ is linearly independent if and only if $v \notin \operatorname{Span}(S)$.

Proof.

Suppose that S^{\prime} is linearly independent. If we had $v \in \operatorname{Span}(S)$, then v would be a linear combination of vectors from S. Then by our previous propostion, S^{\prime} would be linearly dependent. Hence $v \notin \operatorname{Span}(S)$.

Proof

Proof Continued.

Conversely, suppose $v \notin \operatorname{Span}(S)$. Let u_{1}, \ldots, u_{n} be distinct vectors from $S^{\prime}=\{v\} \cup S$ and a_{k} scalars such that $a_{1} u_{1}+\cdots+a_{n} u_{n}=0 v$. If none of the $u_{k}=v$, then all the $a_{k}=0$ since S is linearly independent. So we may as well assume that $u_{1}=v$ and that $a_{1} \neq 0$. But then

$$
v=-\frac{a_{2}}{a_{1}} u_{2}-\cdots-\frac{a_{n}}{a_{1}} u_{n} .
$$

But u_{2}, \ldots, u_{n} are all in S. Then $v \in \operatorname{Span}(S)$ and we get a contradiction.

Break Time

Time for a break and some questions.

Bases

Definition

A basis for a vector space V is a linearly independent set that generates V.

Example

Since \emptyset is linearly independent and since we defined
$\operatorname{Span}(\emptyset)=\left\{0_{V}\right\}$, the empty set is a basis for the trivial vector space $\left\{0_{V}\right\}$.

Example (Standard Basis)

$$
\begin{aligned}
& \text { Let } V=\mathbf{F}^{n} \text {. Let } e_{1}=(1,0, \ldots, 0) \text {, } \\
& e_{2}=(0,1,0, \ldots, 0), \ldots, e_{n}=(0, \ldots, 0,1) \text {. Then }\left\{e_{1}, \ldots, e_{n}\right\} \text { is }
\end{aligned}
$$ easily seen to be a basis for \mathbf{F}^{n} usually called the standard basis for F^{n}.

More Examples

Example (Standard Basis for $\mathrm{P}_{n}(\mathbf{F})$)

Let $V=P_{n}(\mathbf{F})$. Then $\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ is a basis for $P_{n}(\mathbf{F})$ called the standard basis for $P_{n}(\mathbf{F})$.

Example

Let $V=M_{m \times n}(\mathbf{F})$. Let $E^{i j} \in M_{m \times n}(\mathbf{F})$ be the matrix all of whose entries are 0 except for the $(i, j)^{\text {th }}$ entry which is 1 . Then $\left\{E_{i j}: 1 \leq i \leq m\right.$ and $\left.1 \leq j \leq n\right\}$ is a basis for $M_{m \times n}(\mathbf{F})$. For example if $m=n=2$, then $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$ is a basis for $M_{2 \times 2}(\mathbf{F})$.

Lots of Bases

Example

Let $S=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\} \subset \mathbf{R}^{4}$ where $u_{1}=(1,1,1,1), u_{2}=(1,1,1,0)$, $u_{3}=(1,1,0,0)$ and $u_{4}=(1,0,0,0)$. We already showed S is linearly independent. To see that it is a basis for \mathbf{R}^{4} we have to see that it spans \mathbf{R}^{4}. That is, we need to know that
$a_{1} u_{1}+a_{2} u_{2}+a_{3} u_{3}+a_{4} u_{4}=(x, y, z, w)$ always has a solution. That means we have to solve

$$
\begin{array}{ll}
a_{1}+a_{2}+a_{3}+a_{4} & =x \\
a_{1}+a_{2}+a_{3} & =y \\
a_{1}+a_{2} & =z \\
a_{1} & =w .
\end{array}
$$

But this is straightforward: $a_{1}=w, a_{2}=z-w$, $a_{3}=y-w-z+w=y-z$, and $a_{4}=x-w-(z-w)-(y-z)=x-y$. Hence $S=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ is a basis for \mathbf{R}^{4}.

Bases are Cool

Theorem

Let V be a vector space and $\left\{u_{1}, \ldots, u_{n}\right\}$ vectors in V. Then $\left\{u_{1}, \ldots, u_{n}\right\}$ is a basis for V if and only if every $v \in V$ can be written as a unique linear combination of the vectors u_{1}, \ldots, u_{n}-that is, there are unique scalars a_{1}, \ldots, a_{n} such that $v=a_{1} u_{1}+\cdots+a_{n} u_{n}$.

Proof.

Suppose that $\left\{u_{1}, \ldots, u_{n}\right\}$ is a basis. If $v \in V$, then since $\left\{u_{1}, \ldots, u_{n}\right\}$ generates V, there are scalars a_{k} such that $v=a_{1} u_{1}+\cdots+a_{n} u_{n}$. If we also have $v=b_{1} u_{1}+\cdots+b_{n} u_{n}$ for scalars b_{k}, then $0_{v}=\left(a_{1}-b_{1}\right) u_{1}+\cdots+\left(a_{n}-b_{n}\right) u_{n}$. Since $\left\{u_{1}, \ldots, u_{n}\right\}$ is linearly independent, this can only happen if $a_{k}-b_{k}=0$ for all k. That is, we must have $a_{k}=b_{k}$ for all k. This proves the first part of the result.

Proof

Proof Continued.

Now suppose every $v \in V$ is a unique linear combination of the u_{k}. Then by assumption $\left\{u_{1}, \ldots, u_{n}\right\}$ spans V. But if
$0_{V}=a_{1} u_{1}+\cdots+a_{n} u_{n}$, then the a_{k} must all be zero by uniqueness since $0_{V}=0 \cdot u_{1}+\cdots+0 \cdot u_{n}$. Thus $\left\{u_{1}, \ldots, u_{n}\right\}$ is a basis.

Enough

(1) That is enough for today.

