
Math 24: Winter 2021
Lecture 5

Dana P. Williams

Dartmouth College

Wednesday, January 20, 2021

Dana P. Williams Math 24: Winter 2021 Lecture 5



Let’s Get Started

1 We should be recording.

2 Remember, it is more comfortable for me if you turn on your
video so that I feel like I am talking to real people.

3 I put a link to some brief homework solutions on the
assignments page. I’ll update the link as the term progresses.

4 You should have turned in your second homework by now.

5 Because of the Monday holiday, we will be meeting in our
x-hour tomorrow from 12:30 to 1:20.

6 But first, are there any questions from last time?
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Review

Theorem

If S is any subset of a vector space V , then Span(S) is subspace of
V containing S . Furthermore, any subspace of V containing S
must also contain Span(S). Hence Span(S) is the smallest
subspace of V containing S .

Definition

A subset S ⊂ V spans V or generates V if V = Span(S). In this
case, we say that vectors of S span or generate V .

Proposition

Let v1, . . . , vn+1 be vectors in a vector space V . Suppose that
vn+1 ∈ Span({ v1, . . . , vn }). Then

Span({ v1, . . . , vn }) = Span({ v1, . . . , vn+1 }).
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Efficiency

Definition

A subset S of a vector space V is called linearly dependent if there
are finitely many distinct vectors u1, . . . , un in S and scalars
a1, . . . , an not all equal to 0 such that

a1u1 + · · ·+ anun = 0V . (‡)

Remark

The words “distinct” and “not all equal to 0” are critical. If
ak = 0 for all k, then (‡) is always satisfied no matter what the uk
are. We call this a trivial representation of 0V . If u1 = u2, then
−(1)u1 + (1)u2 = 0V would be a nontrivial representation of 0V
which would tell us nothing about the set S .
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Example

Example

Let A1 =
(
1 1
1 1

)
, A2 =

(
0 −1
3 0

)
, A3 =

(
1 1
0 1

)
, and A4 =

(
1 0
1 1

)
and

consider S = {A1,A2,A3,A4 } ⊂ M2×2(R). To see if S is linearly
dependent, we have to look for a nontrivial solution to
a1A1 + a2A2 + a3A3 + a4A4 = O. This results in the system

a1 + a3 + a4 = 0

a1 − a2 + a3 = 0

a1 + 3a2 + a4 = 0

a1 + a3 + a4 = 0.

You can confirm that a1 = 2, a2 = −1, a3 = −3, and a4 = 1 is a
nontrivial solution. Hence S is linearly dependent. (In fact, all the
solutions are { (2t,−t,−3t, t) : t ∈ R } and it might be a good
idea to check this.)
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Redundancy

Remark

Notice that in the process of showing that the set S on the previous slide
was linearly dependent, we discovered some relationships between the Ak .
For example, A2 = 2A1 − 3A3 + A4 as well as A1 = 1

2A2 + 3
2A3 − 1

2A4,
etc. So for example, Span{A1,A2,A3,A4 } = Span{A1,A3,A4 } using
our result from last time.

Proposition

Let S be a subset of a vector space V . Then S is linearly dependent if
and only if (at least) one of the vectors in S can be written as a linear
combination of other vectors from S . return

Proof.

Suppose v ∈ S is such that v = a1u1 + · · ·+ anun for distinct vectors
u1, . . . , un is S not equal to v . Then 0V = a1u1 + · · ·+ anun + (−1)v is a
nontrivial representation of 0V and S is linearly dependent.
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Proof

Proof Continued.

Conversely, suppose that S is linearly dependent. Then there are
distinct vectors u1, . . . , un is S and scalars a1, . . . , an not all equal
to 0 so that a1u1 + · · ·+ anun = 0V . Renumbering the vectors if
necessary, we can assume an 6= 0. Then we have

un = −a1
an

u1 − · · · −
an−1
an

un−1.

That is, un is a linear combination of u1, . . . , un−1 from S .
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Linear Independence

Remark

If we want to find a spanning set for V , then a linearly dependent
set S is guaranteed to have redundancies—one of the vectors in S
can be written as a linear combination of the other vectors in S . So
it makes sense to make the following (equally important) definition.

Definition

We call a subset S in a vector space V linearly independent if it is
not linearly dependent.
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Low Hanging Fruit

Remark

1 The empty set is linearly independent since a linearly
dependent set can’t be empty.

2 A set consisting of a single nonzero vector is linearly
independent. If v 6= 0V and av = 0V then a = 0.

3 Let S = { u, v } be distinct vectors in a vector space V . Then
S is linearly independent if and only if neither u nor v is a
multiple of the other. (This homework problem §1.5, #9.)

4 A set S is linearly independent if and only if the only
representations of 0V as linear combinations of vectors from S
are the trivial ones. That is, if we assume u1, . . . , un are
distinct vectors from S such that there are scalars a1, . . . , an
such that a1u1 + · · ·+ anun = 0V , then a1 = · · · = an = 0.
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An Example

Example

Let V = R4. Let u1 = (1, 1, 1, 1), u2 = (1, 1, 1, 0), u3 = (1, 1, 0, 0)
and u4 = (1, 0, 0, 0). Is S = { u1, u2, u3, u4 } linearly independent?

Solution

We need to show that a1u1 + a2u2 + a3u3 + a4u4 = (0, 0, 0, 0) has
only the trivial solution. But this gives us the system

a1 + a2 + a3 + a4 = 0

a1 + a2 + a3 = 0

a1 + a2 = 0

a1 = 0.

Since the only solution is a1 = a2 = a3 = a4 = 0, the set is linearly
independent.
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Break Time

Time for a short break and some questions.
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Linear Independence

Theorem

Let V be a vector space. Suppose that S1 and S2 are subsets such that
S1 ⊂ S2.

1 If S1 is linearly dependent, then so is S2.

2 If S2 is linearly independent, then so is S1.

Proof.

Item 2 follows from item 1. Why?
So we just need to prove item 1. Suppose S1 is linearly dependent. Then
there are distinct vectors u1, . . . , un and scalars a1, . . . , an, not all equal
to 0, such that

0V = a1u1 + · · ·+ anun (1)

is a nontrivial representation of 0V from vectors in S1 But the uk are also
in S2. Hence (1) is also a nontrivial representation of 0V from vectors in
S2. This shows that S2 is linearly dependent.
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A Theorem

Theorem

Suppose that S is a linearly independent set in a vector space V . If
v ∈ V , then S ′ = {v} ∪ S is linearly independent if and only if
v /∈ Span(S).

Proof.

Suppose that S ′ is linearly independent. If we had v ∈ Span(S),
then v would be a linear combination of vectors from S . Then by
our previous propostion , S ′ would be linearly dependent. Hence
v /∈ Span(S).
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Proof

Proof Continued.

Conversely, suppose v /∈ Span(S). Let u1, . . . , un be distinct
vectors from S ′ = {v} ∪ S and ak scalars such that
a1u1 + · · ·+ anun = 0V . If none of the uk = v , then all the ak = 0
since S is linearly independent. So we may as well assume that
u1 = v and that a1 6= 0. But then

v = −a2
a1

u2 − · · · −
an
a1

un.

But u2, . . . , un are all in S . Then v ∈ Span(S) and we get a
contradiction.
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Break Time

Time for a break and some questions.
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Bases

Definition

A basis for a vector space V is a linearly independent set that
generates V .

Example

Since ∅ is linearly independent and since we defined
Span(∅) = {0V }, the empty set is a basis for the trivial vector
space {0V }.

Example (Standard Basis)

Let V = Fn. Let e1 = (1, 0, . . . , 0),
e2 = (0, 1, 0, . . . , 0),. . . ,en = (0, . . . , 0, 1). Then { e1, . . . , en } is
easily seen to be a basis for Fn usually called the standard basis for
Fn.
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More Examples

Example (Standard Basis for Pn(F))

Let V = Pn(F). Then { 1, x , x2, . . . , xn } is a basis for Pn(F) called
the standard basis for Pn(F).

Example

Let V = Mm×n(F). Let E ij ∈ Mm×n(F) be the matrix all of whose
entries are 0 except for the (i , j)th entry which is 1. Then
{Eij : 1 ≤ i ≤ m and 1 ≤ j ≤ n } is a basis for Mm×n(F). For
example if m = n = 2, then {

(
1 0
0 0

)
,
(
0 1
0 0

)
,
(
0 0
1 0

)
,
(
0 0
0 1

)
} is a basis

for M2×2(F).
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Lots of Bases

Example

Let S = { u1, u2, u3, u4 } ⊂ R4 where u1 = (1, 1, 1, 1), u2 = (1, 1, 1, 0),
u3 = (1, 1, 0, 0) and u4 = (1, 0, 0, 0). We already showed S is linearly
independent. To see that it is a basis for R4 we have to see that it spans
R4. That is, we need to know that
a1u1 + a2u2 + a3u3 + a4u4 = (x , y , z ,w) always has a solution. That
means we have to solve

a1 + a2 + a3 + a4 = x

a1 + a2 + a3 = y

a1 + a2 = z

a1 = w .

But this is straightforward: a1 = w , a2 = z − w ,
a3 = y −w − z +w = y − z , and a4 = x −w − (z −w)− (y − z) = x − y .
Hence S = { u1, u2, u3, u4 } is a basis for R4.

Dana P. Williams Math 24: Winter 2021 Lecture 5



Bases are Cool

Theorem

Let V be a vector space and { u1, . . . , un } vectors in V . Then
{ u1, . . . , un } is a basis for V if and only if every v ∈ V can be
written as a unique linear combination of the vectors
u1, . . . , un—that is, there are unique scalars a1, . . . , an such that
v = a1u1 + · · ·+ anun.

Proof.

Suppose that { u1, . . . , un } is a basis. If v ∈ V , then since
{ u1, . . . , un } generates V , there are scalars ak such that
v = a1u1 + · · ·+ anun. If we also have v = b1u1 + · · ·+ bnun for
scalars bk , then 0V = (a1 − b1)u1 + · · ·+ (an − bn)un. Since
{ u1, . . . , un } is linearly independent, this can only happen if
ak − bk = 0 for all k. That is, we must have ak = bk for all k .
This proves the first part of the result.
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Proof

Proof Continued.

Now suppose every v ∈ V is a unique linear combination of the uk .
Then by assumption { u1, . . . , un } spans V . But if
0V = a1u1 + · · ·+ anun, then the ak must all be zero by uniqueness
since 0V = 0 · u1 + · · ·+ 0 · un. Thus { u1, . . . , un } is a basis.
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Enough

1 That is enough for today.
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