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Let’s Get Started

1 We should be recording.

2 Remember, it is more comfortable for me if you turn on your
video so that I feel like I am talking to real people.

3 But first, are there any questions from last time?
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Review

Definition

A subset S of a vector space V is called linearly dependent if there
are finitely many distinct vectors u1, . . . , un in S and scalars
a1, . . . , an not all equal to 0 such that

a1u1 + · · ·+ anun = 0V .

A set which is not linearly dependent is called linearly independent.

Proposition

Let S be a subset of a vector space V . Then S is linearly
dependent if and only if (at least) one of the vectors in S can be
written as a linear combination of other vectors from S .
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More Review

Theorem

Suppose that S is a linearly independent set in a vector space V . If
v ∈ V , then S ′ = {v} ∪ S is linearly independent if and only if
v /∈ Span(S). return

Definition

A basis for a vector space V is a linearly independent set that
generates V .

Theorem

Let V be a vector space and { u1, . . . , un } vectors in V . Then
{ u1, . . . , un } is a basis for V if and only if every v ∈ V can be
written as a unique linear combination of the vectors
u1, . . . , un—that is, there are unique scalars a1, . . . , an such that
v = a1u1 + · · ·+ anun.
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Finite Please

Remark

We saw last time, that { 1, x , x2, . . . , xn } is a basis for Pn(F). In
particular, for any n, { 1, x , x2, . . . , xn } is linearly independent in
Pn(F) and therefore in P(F). Therefore the infinite set
S = { 1, x , x2, . . . } clearly generates P(F) and is linearly
independent. Therefore it is a basis for P(F). We will see shortly
that this means P(F) does not have a finite basis. We will work
almost exclusively with vector spaces that have finite bases!

Theorem

Suppose that V is a vector space and that S is a finite subset of V
that generates V . Then some subset of S is a basis for V and V
has a finite basis.
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Proof

Proof.

If S = ∅, then V = Span(∅) = {0V } and S is a basis for V .
Otherwise, there is a nonzero vector u1 ∈ S . Note that {u1} is
linearly independent. Since S is finite, we can continue adding
vectors u2, u3, etc., from S until { u1, . . . , un } is linearly
independent but no larger subset of S is linearly independent.

If { u1, . . . , un } = S , then S itself is a finite basis.

Otherwise, I claim that β = { u1, . . . , un } is a basis for V . Since β
is linearly independent by construction, we just have to show that
Span(β) = V . For this, it suffices to see that S ⊂ Span(β). Let
v ∈ S . If v ∈ β, then clearly v ∈ Span(β). If v /∈ β, then {v} ∪ β
is not linearly independent by our construction of β. Hence we
must have v ∈ Span(β) by our theorem from last time. Hence
S ⊂ Span(β) and V = Span(S) ⊂ Span(β). Thus β ⊂ S is a finite
basis for V .
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Break Time

Time for a short break and some questions.
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An Aisde: Induction

Remark (A Simple Observation)

Let A be a subset of N = { 1, 2, 3, . . . }. Suppose that 1 ∈ A and if
n ∈ A, then n + 1 ∈ A. Then A = N. We can use this basic observation
to prove things. Let P(n) be a statement that depends on n and is either
true of false. Suppose we prove that P(1) is true and that whenever
P(n) is true for some n ≥ 1, then P(n + 1) is true. Then the set
A = { n ∈ N : P(n) is true } has exactly the above property and must be
all of N!

Remark (Proof by Induction)

Thus to prove a statement P(n) is true for all n ∈ N, we can proceed as
follows.

1 Prove that P(1) is true.

2 Assume that P(n) is true for some n ≥ 1. (This is called the
Inductive Hypothesis.

3 Then use the truth of P(n) to prove that P(n + 1) is true.
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Example

Example

Show that 1 + 2 + · · ·+ n =
n(n + 1)

2
.

Solution

Here P(n) is the statement that 1 + 2 + · · ·+ n = n(n+1)
2 . This is

clearly true if n = 1. Suppose P(n) holds for some n ≥ 1. Then we
have

1 + 2+ · · ·+ n + 1 = (1 + 2 + · · ·+ n) + (n + 1)

=
n(n + 1)

2
+ n + 1 =

1

2
(n2 + n + 2n + 2)

=
(n + 1)(n + 2)

2
=

(n + 1)((n + 1) + 1)

2
.

Therefore P(n + 1) holds. This completes the proof.
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Replacement Theorem

Theorem (Replacement Theorem)

Let V be a vector space. Suppose that G is a finite set of n
elements that generates V . Let L be a linearly independent subset
of V containing m vectors. Then m ≤ n and there is a subset
H ⊂ G containing exactly n−m vectors such that L ∪H generates
V .

Proof.

If L = ∅, then m = 0 and we can let H = G .

If m = 1, then L = {v} for a nonzero vector v . Since
G = { u1, . . . , un } generates, v = a1u1 + · · ·+ anun. Since
v 6= 0V , at least one ak 6= 0. We may as well assume a1 6= 0. Then

u1 =
1

a1
v − a2

a1
u2 − · · · −

an
a1

un,
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Proof

Proof Continued.

Then I claim we can let H = { u2, . . . , un }. Since H has n − 1
elements, it suffices to see that L ∪ H generates. But it follows
from the last slide that
{ u1, . . . , un } ⊂ Span(L ∪ H). Then
V = Span({ u1, . . . , un } ⊂ Span(L ∪ H) and we’ve proven the
result when m = 1.

So we proceed by induction and assume that result when L has m
elements for some m ≥ 1.

Now let L = { v1, . . . , vm, vm+1 }. Then L′ = { v1, . . . , vm } is
linearly independent with m elements. Then by the Induction
hypothesis, m ≤ n and there is a subset H ′ = { u1, . . . , un−m } ⊂ G
containing n −m elements such that L′ ∪ H ′ generates V .
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Proof

Proof Continued.

Therefore, for appropriate scalars,

vm+1 = a1v1 + · · ·+ amvm + b1u1 + · · ·+ bn−mun−m.

Since L is linearly independent, vm+1 /∈ Span(L′) and we must have
some bk 6= 0. We may as well assume b1 6= 0. Then

u1 = −a1
b1

v1 − · · · −
am
b1

vm

+
1

b1
vm+1

− b2
a1

u2 − · · · −
bn−m
b1

un−m.
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Proof

Proof Continued.

Therefore if we let H = { u2, . . . , un−m }, then H has n − (m + 1)
elements and the previous slide shows

u1 ∈ Span(L ∪ H).

Since L′ ⊂ L and H ′ = {u1} ∪ H, we have L′ ∪ H ′ ⊂ Span(L ∪ H)
Then by assumption

V = Span(L′ ∪ H ′) ⊂ Span(L ∪ H).

Hence L ∪ H generates V . Since L ∪ H has exactly n vectors in it,
we must have m + 1 ≤ n. This completes the proof.
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Break Time

That was a big theorem! Let’s take a break and see if there are
any questions.
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The Pay Off

Corollary

Suppose that V is a vector space with a finite basis. Then every
basis of V is finite and has the same number of vectors.

Proof.

Let β = { u1, . . . , un } be a finite basis for V . Suppose that α is
another basis. If α were infinite, it would contain a linearly
independent subset L with n + 1 vectors. This contradicts our
theorem since β generates V . Hence α = { v1, . . . , vm } must be
finite. Since α is linearly independent and β generates, m ≤ n.
Now we can reverse the roles of α and β to see that n ≤ m.
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Dimension

Definition

A vector space is called finite dimensional if it has a finite basis.
The common number of elements in any finite basis is called the
dimension of V and is denoted by dim(V ). If V does not have a
finite basis, then we say that V is infinite dimensional.

Example

1 The dimension of the trivial space {0V } is zero.

2 We have dim(Fn) = n.

3 We have dim
(
Pn(F )

)
= n + 1.

4 We have dim
(
Mm×n(F)

)
= mn.

5 The vector space P(F) is infinite dimensional.
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Enough

1 That is enough for today.
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