Math 24: Winter 2021 Lecture 6

Dana P. Williams

Dartmouth College

Thursday, January 21, 2021

- **1** We should be recording.
- Remember, it is more comfortable for me if you turn on your video so that I feel like I am talking to real people.
- Is But first, are there any questions from last time?

Definition

A subset S of a vector space V is called linearly dependent if there are finitely many distinct vectors u_1, \ldots, u_n in S and scalars a_1, \ldots, a_n not all equal to 0 such that

$$a_1u_1+\cdots+a_nu_n=0_V.$$

A set which is not linearly dependent is called linearly independent.

Proposition

Let S be a subset of a vector space V. Then S is linearly dependent if and only if (at least) one of the vectors in S can be written as a linear combination of other vectors from S.

Theorem

Suppose that S is a linearly independent set in a vector space V. If $v \in V$, then $S' = \{v\} \cup S$ is linearly independent if and only if $v \notin \text{Span}(S)$. return

Definition

A basis for a vector space V is a linearly independent set that generates V.

Theorem

Let V be a vector space and $\{u_1, \ldots, u_n\}$ vectors in V. Then $\{u_1, \ldots, u_n\}$ is a basis for V if and only if every $v \in V$ can be written as a unique linear combination of the vectors u_1, \ldots, u_n —that is, there are unique scalars a_1, \ldots, a_n such that $v = a_1u_1 + \cdots + a_nu_n$.

Remark

We saw last time, that $\{1, x, x^2, ..., x^n\}$ is a basis for $P_n(\mathbf{F})$. In particular, for any $n, \{1, x, x^2, ..., x^n\}$ is linearly independent in $P_n(\mathbf{F})$ and therefore in $P(\mathbf{F})$. Therefore the infinite set $S = \{1, x, x^2, ...\}$ clearly generates $P(\mathbf{F})$ and is linearly independent. Therefore it is a basis for $P(\mathbf{F})$. We will see shortly that this means $P(\mathbf{F})$ does not have a finite basis. We will work almost exclusively with vector spaces that have finite bases!

Theorem

Suppose that V is a vector space and that S is a finite subset of V that generates V. Then some subset of S is a basis for V and V has a finite basis.

Proof

Proof.

If $S = \emptyset$, then $V = \text{Span}(\emptyset) = \{0_V\}$ and S is a basis for V. Otherwise, there is a nonzero vector $u_1 \in S$. Note that $\{u_1\}$ is linearly independent. Since S is finite, we can continue adding vectors u_2 , u_3 , etc., from S until $\{u_1, \ldots, u_n\}$ is linearly independent but no larger subset of S is linearly independent.

If $\{u_1, \ldots, u_n\} = S$, then S itself is a finite basis.

Otherwise, I claim that $\beta = \{u_1, \ldots, u_n\}$ is a basis for V. Since β is linearly independent by construction, we just have to show that $\text{Span}(\beta) = V$. For this, it suffices to see that $S \subset \text{Span}(\beta)$. Let $v \in S$. If $v \in \beta$, then clearly $v \in \text{Span}(\beta)$. If $v \notin \beta$, then $\{v\} \cup \beta$ is not linearly independent by our construction of β . Hence we must have $v \in \text{Span}(\beta)$ by our \bullet theorem from last time. Hence $S \subset \text{Span}(\beta)$ and $V = \text{Span}(S) \subset \text{Span}(\beta)$. Thus $\beta \subset S$ is a finite basis for V.

Time for a short break and some questions.

An Aisde: Induction

Remark (A Simple Observation)

Let A be a subset of $\mathbf{N} = \{1, 2, 3, ...\}$. Suppose that $1 \in A$ and if $n \in A$, then $n + 1 \in A$. Then $A = \mathbf{N}$. We can use this basic observation to prove things. Let P(n) be a statement that depends on n and is either true of false. Suppose we prove that P(1) is true and that whenever P(n) is true for some $n \ge 1$, then P(n + 1) is true. Then the set $A = \{n \in \mathbf{N} : P(n) \text{ is true }\}$ has exactly the above property and must be all of \mathbf{N} !

Remark (Proof by Induction)

Thus to prove a statement P(n) is true for all $n \in \mathbf{N}$, we can proceed as follows.

- **1** Prove that P(1) is true.
- ② Assume that P(n) is true for some n ≥ 1. (This is called the Inductive Hypothesis.
- 3 Then use the truth of P(n) to prove that P(n+1) is true.

Example

Example

Show that
$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$
.

Solution

Here P(n) is the statement that $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$. This is clearly true if n = 1. Suppose P(n) holds for some $n \ge 1$. Then we have

$$1 + 2 + \dots + n + 1 = (1 + 2 + \dots + n) + (n + 1)$$

= $\frac{n(n + 1)}{2} + n + 1 = \frac{1}{2}(n^2 + n + 2n + 2)$
= $\frac{(n + 1)(n + 2)}{2} = \frac{(n + 1)((n + 1) + 1)}{2}.$

Therefore P(n+1) holds. This completes the proof.

Theorem (Replacement Theorem)

Let V be a vector space. Suppose that G is a finite set of n elements that generates V. Let L be a linearly independent subset of V containing m vectors. Then $m \le n$ and there is a subset $H \subset G$ containing exactly n - m vectors such that $L \cup H$ generates V.

Proof.

If
$$L = \emptyset$$
, then $m = 0$ and we can let $H = G$.

If m = 1, then $L = \{v\}$ for a nonzero vector v. Since $G = \{u_1, \ldots, u_n\}$ generates, $v = a_1u_1 + \cdots + a_nu_n$. Since $v \neq 0_V$, at least one $a_k \neq 0$. We may as well assume $a_1 \neq 0$. Then

$$u_1 = \frac{1}{a_1}v - \frac{a_2}{a_1}u_2 - \cdots - \frac{a_n}{a_1}u_n,$$

Proof Continued.

Then I claim we can let $H = \{u_2, \ldots, u_n\}$. Since H has n-1 elements, it suffices to see that $L \cup H$ generates. But it follows from the last slide that $\{u_1, \ldots, u_n\} \subset \text{Span}(L \cup H)$. Then $V = \text{Span}(\{u_1, \ldots, u_n\} \subset \text{Span}(L \cup H)$ and we've proven the result when m = 1.

So we proceed by induction and assume that result when L has m elements for some $m \ge 1$.

Now let $L = \{v_1, \ldots, v_m, v_{m+1}\}$. Then $L' = \{v_1, \ldots, v_m\}$ is linearly independent with *m* elements. Then by the Induction hypothesis, $m \le n$ and there is a subset $H' = \{u_1, \ldots, u_{n-m}\} \subset G$ containing n - m elements such that $L' \cup H'$ generates *V*.

Proof Continued.

Therefore, for appropriate scalars,

$$v_{m+1} = a_1v_1 + \cdots + a_mv_m + b_1u_1 + \cdots + b_{n-m}u_{n-m}.$$

Since *L* is linearly independent, $v_{m+1} \notin \text{Span}(L')$ and we must have some $b_k \neq 0$. We may as well assume $b_1 \neq 0$. Then

$$u_{1} = -\frac{a_{1}}{b_{1}}v_{1} - \dots - \frac{a_{m}}{b_{1}}v_{m} + \frac{1}{b_{1}}v_{m+1} - \frac{b_{2}}{a_{1}}u_{2} - \dots - \frac{b_{n-m}}{b_{1}}u_{n-m}.$$

Proof Continued.

Therefore if we let $H = \{ u_2, ..., u_{n-m} \}$, then H has n - (m + 1) elements and the previous slide shows

 $u_1 \in \text{Span}(L \cup H).$

Since $L' \subset L$ and $H' = \{u_1\} \cup H$, we have $L' \cup H' \subset \text{Span}(L \cup H)$ Then by assumption

$$V = \operatorname{Span}(L' \cup H') \subset \operatorname{Span}(L \cup H).$$

Hence $L \cup H$ generates V. Since $L \cup H$ has exactly *n* vectors in it, we must have $m + 1 \le n$. This completes the proof.

That was a big theorem! Let's take a break and see if there are any questions.

Corollary

Suppose that V is a vector space with a finite basis. Then every basis of V is finite and has the same number of vectors.

Proof.

Let $\beta = \{u_1, \ldots, u_n\}$ be a finite basis for V. Suppose that α is another basis. If α were infinite, it would contain a linearly independent subset L with n + 1 vectors. This contradicts our theorem since β generates V. Hence $\alpha = \{v_1, \ldots, v_m\}$ must be finite. Since α is linearly independent and β generates, $m \le n$. Now we can reverse the roles of α and β to see that $n \le m$.

Definition

A vector space is called finite dimensional if it has a finite basis. The common number of elements in any finite basis is called the dimension of V and is denoted by dim(V). If V does not have a finite basis, then we say that V is infinite dimensional.

Example

- The dimension of the trivial space $\{0_V\}$ is zero.
- **2** We have dim(\mathbf{F}^n) = n.
- We have dim $(P_n(F)) = n + 1$.
- We have dim $(M_{m \times n}(\mathbf{F})) = mn$.
- The vector space $P(\mathbf{F})$ is infinite dimensional.

1 That is enough for today.