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Let’s Get Started

1 We should be recording.

2 Remember, it is more comfortable for me if you turn on your
video so that I feel like I am talking to real people.

3 Our preliminary exam will be available from Thursday at 11am
(after office hours) and must be submitted by Saturday at
10pm EST. You will have 150 minutes to work on the exam
with an extra 30 minutes for scanning and submitting via
gradescope. The exam will cover through and including §2.2
in the text (which I hope to finish on Monday).

4 But first, are there any questions from last time?
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Review

Theorem (Replacement Theorem)

Let V be a vector space. Suppose that G is a finite set of n
elements that generates V . Let L be a linearly independent subset
of V containing m vectors. Then m ≤ n and there is a subset
H ⊂ G containing exactly n−m vectors such that L ∪H generates
V .

Corollary

Suppose that V is a vector space with a finite basis. Then every
basis of V is finite and has the same number of vectors.

Definition

A vector space is called finite dimensional if it has a finite basis.
The common number of elements in any finite basis is called the
dimension of V and is denoted by dim(V ). If V does not have a
finite basis, then we say that V is infinite dimensional.
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Dimension

Definition

A vector space is called finite dimensional if it has a finite basis.
The common number of elements in any finite basis is called the
dimension of V and is denoted by dim(V ). If V does not have a
finite basis, then we say that V is infinite dimensional.

Example

1 The dimension of the trivial space {0V } is zero.

2 We have dim(Fn) = n.

3 We have dim
(
Pn(F )

)
= n + 1.

4 We have dim
(
Mm×n(F)

)
= mn.

5 The vector space P(F) is infinite dimensional.
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Given Dimension

Theorem (Corollary of the Replacement Theorem)

Suppose that V is a vector space with dimension n.

1 Every generating set for V has at least n vectors and any
generating set with n vectors is a basis.

2 Every linearly independent subset of V contains at most n
vectors and a linearly independent set with n vectors is a basis.

3 Every linearly independent subset of V can be extended to a
basis for V . (That is, if L is linearly independent, then there is
a basis β for V such that L ⊂ β.)
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Proof

Proof.

Let β be a basis for V containing n elements.
(1) Suppose that G generates V . Then some subset H of G is a
basis and must have n elements in it. Thus G has at least n
elements. If G has exactly n elements, then G = H and is a basis
for V .

(2) If L is linearly independent and has m vectors in it, then m ≤ n
by the Replacement Theorem and there is a subset H of β with
n −m elements such that L ∪ H generates. Thus if m = n, then
H = ∅ and L also generates. Hence L is a basis.

(3) If L is linearly independent and H ⊂ β is as in item 2 with
n −m elements, then L ∪ H is a generating set with exactly n
elements. Hence L ∪ H must be a basis extending L by
part (1).
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Examples

Example

We saw in lecture 5 that
β = { (1, 1, 1, 1), (1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 0) } is linearly
independent in R4. Since dim(R4)) = 4, β is a basis for R4. Hence
it automatically generates R4 as we also proved directly in
lecture 5.

Example

Let p1(x) = 1− x + 2x2 − x3, p2(x) = 7x + 3x3, and
p3(x) = −2 + x2 − 10x3. Since dim(P3(R)) = 4, S = { p1, p2, p3 }
does not generate P3(R).
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Subspaces

Theorem

Suppose that V is a finite-dimensional vector space. If W is a
subspace of V , then W if finite dimensional and
dim(W ) ≤ dim(V ). If dim(W ) = dim(V ), then W = V .

Proof.

Let W be a subspace of V . If W = {0V } then W is finite
dimensional with dim(W ) = 0 ≤ dim(V ). Otherwise, W contains
a nonzero vector u1 and {u1} is linearly independent. If
Span({u1}) 6= W , then we can find u2 ∈W \ Span({u1}). Thus
{ u1, u2 } = {u1} ∪ {u2} is linearly independent. Continuing, we
get linearly independent sets { u1, . . . , um } in W . Since
{ u1, . . . , um } is linearly independent in V as well, m ≤ dim(V ).

Dana P. Williams Math 24: Winter 2021 Lecture 7



Proof

Proof Continued.

Hence the process must terminate with some m ≤ dim(V ), and we
get { u1, . . . , um } linearly independent in W with
Span({ u1, . . . , um }) = W and m ≤ dim(V ). Hence W is finite
dimensional with dim(W ) ≤ dim(V ).

If dim(W ) = dim(V ), then any basis β of W is a linearly
independent set in V containing dim(V ) vectors. Hence it must be
a basis for V . Therefore V = Span(β) = W .
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A Corollary

Corollary

If W is a subspace of a finite dimensional vector space V , then any
basis of W can be extended to a basis of V .

Proof.

A basis for W is a linearly independent set if V . Hence it can be
extended to a basis.
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Bases for Subspaces

Example

Recall that E ij is the matrix with a 1 is the (i , j)th slot and zeros
elsewhere. Let W be the subspace of symmetric matrices in
M2×2(R). We saw that β = {E 11,E 22,E 12 + E 21 } generates W .
In fact, aE 11 + bE 22 + c(E 12 + E 21) =

(
a c
c d

)
. Thus if

aE 11 + bE 22 + c(E 12 + E 21) = O, then a = b = c = 0. It follows
that β is linearly independent and dim(W ) = 3. More generally,
we can let Aij be the n × n-matrix with ones in the (i , j)th and
(j , i)th slots. Thus Aij = E ij if i = j and Aij = E ij + E ji otherwise.
Then it is not hard to see that β = {Aij : 1 ≤ i ≤ j ≤ n } is a basis
for the subspace W of symmetric matrices in Mn×n(F). Then

dim(W ) = n + (n − 1) + · · · = 1 = n(n+1)
2 .
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Break Time

Time for a well earned rest and perhaps some questions.
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Linear Maps

Definition

Let V and W be vector spaces over the same field F. A function
T : V →W is called a linear transformation or a linear map if for all
x , y ∈ V and a ∈ F we have

1 T (x + y) = T (x) + T (y), and

2 T (ax) = aT (x).

Remark

Linear transformations are very special sorts of functions. Our favorite
functions from the Good ol’ days of calculus are almost never linear. If
f (x) = x2, then outside of Enormous State University, we don’t generally
have (x + y)2 = f (x + y) equal to f (x) + f (y) = x2 + y2. In fact, if
T : R→ R is linear (viewing R as a one-dimensional real-vector space),
then T (x) = T (x · 1) = xT (1). So linear transformations from V = R to
itself are all of the form T (x) = ax for some real number a ∈ R. In fact,
what we called linear functions back in the day, namely functions of the
form f (x) = mx + b, are linear transformations only when b = 0!
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Low Hanging Fruit

Proposition

Suppose that T : V →W is linear. Then T (0V ) = 0W .

Proof.

T (0V ) = T (0V + 0V ) = T (0V ) + T (0V ). Now add −T (0V ) to both
sides.

Proposition

Suppose T : V →W is linear. If v1, . . . , vn ∈ V and ak ∈ F, then

T
( n∑
k=1

akvk

)
=

n∑
k=1

akT (vk).

Proof.

We have
T
(∑n

k=1 akvk

)
= T

(
a1v1 +

∑n
k=2 akvk

)
= a1T (v1) + T

(∑n
k=2 akvk

)
.

Now use induction.
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Examples

Lemma

A function T : V →W is linear if and only if
T (ax + y) = aT (x) + T (y) for all x , y ∈ V and a ∈ F.

Proof.

This is an exercise.

Example

Define T : R2 → R2 by T (x , y) =
(
x − y , 2x + y

)
. Show that T is

linear.

Solution

We use the above lemma. We have T
(
a(x , y) + (x ′, y ′)

)
=

T (ax + x ′, ay + y ′) = (ax + x ′ − ay − y ′, 2ax + 2x ′ + ay + y ′) =
a(x − y , 2x + y) + (x ′ − y ′, 2x ′ + y ′) = aT (x , y) + T (x ′, y ′). Thus
T is linear.
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More Examples

Example (The Transpose)

Let V = Mm×n(F) and W = Mn×m(F). Define
T : Mm×n(F)→ Mn×m(F) by T (A) = At . Then you showed on
homework that
T (aA + B) = (aA + B)t = aAt + Bt = aT (A) + T (B). Hence T
is linear (by our lemma).

Example (Differentiation)

Let V = C∞(R) be the subset of C (R) consisting of functions
which have derivatives of all orders at every point. (Such functions
are sometimes called smooth.) Since the derivative of sum is the
sum of the derivatives, it is not hard to verify that V is a
subspace—and hence a real-vector space. We can define
T : V → V by T (f ) = f ′. Then T is linear:
T (af + g) = (af + g)′ = af ′ + g ′ = aT (f ) + T (g).
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Good Friends

Definition

If V is a vector space over F, then the identity transformation is
the map IV : V → V given by IV (x) = x for all x ∈ V . If W is
also a vector space over F, then the zero transformation
T0 : V →W is given by T0(v) = 0W for all v ∈ V .

Remark

The identity transformation and the zero transformation are easily
seen to be linear transformations. When there is no ambiguity
about V , we sometimes write I in place of IV .
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Break Time

Time to relax a bit and ask some questions.
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The Null Space and Range

Definition

Suppose that T : V →W is a linear transformation. Then the null
space or kernel of T is the set N(T ) = { v ∈ V : T (v) = 0W }.
The range of T is the set R(T ) = {T (v) : v ∈ V }.

Example

Let T : R2 → R2 be given by T (x , y) = (x − y , 0). Then it is an
exercise to verify that T is linear, that
N(T ) = { (x , x) : x ∈ R } = Span({(1, 1)}), and that
R(T ) = { (x , 0); x ∈ R } = Span({(1, 0)}).
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Subspaces

Proposition

If T : V →W is linear, then N(T ) is a subspace of V and R(T ) is
a subspace of W .

Proof.

Since we always have T (0V ) = 0W , we have 0V ∈ N(T ). If
x , y ∈ N(T ) and a ∈ F, then
T (ax + y) = aT (x) + T (y) = a0W + 0W = 0W . Hence
ax + y ∈ N(T ). Thus N(T ) is a subspace of V .

Note that the above shows 0W ∈ R(T ). If u, v ∈ R(T ) and a ∈ F,
then, by definition, there are x , y ∈ V , such that T (x) = u and
T (y) = v . But then ax + y ∈ V , and
T (ax + y) = aT (x) + T (y) = au + v . Hence au + v ∈ R(T ) and
R(T ) is a subspace.
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Spans

Proposition

Suppose that T : V →W is linear and that β = { v1, . . . , vn } is a
basis for V . Then {T (v1), . . . ,T (vn) } generates R(T ). That is,

R(T ) = Span(T (β)) = Span({T (v1), . . . ,T (vn) }).

Proof.

Since T (vk) ∈ R(T ) for all k and R(T ) is a subspace, we have
Span(T (β)) = Span({T (v1), . . . ,T (vn) }) ⊂ R(T ). For the other
containment, consider w ∈ R(T ). Then w = T (v) for some
v ∈ V . Since β is a basis for V , v = a1v1 + · · ·+ anvn for unique
scalars ak . But then w = T (v) = a1T (v1) + · · ·+ anT (vn) and
w ∈ Span({T (v1), . . . ,T (vn) }). Since w ∈ R(T ) was arbitrary,
we’re done.
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Enough

1 That is enough for today.
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